2 research outputs found

    Shape-based defect classification for Non Destructive Testing

    Full text link
    The aim of this work is to classify the aerospace structure defects detected by eddy current non-destructive testing. The proposed method is based on the assumption that the defect is bound to the reaction of the probe coil impedance during the test. Impedance plane analysis is used to extract a feature vector from the shape of the coil impedance in the complex plane, through the use of some geometric parameters. Shape recognition is tested with three different machine-learning based classifiers: decision trees, neural networks and Naive Bayes. The performance of the proposed detection system are measured in terms of accuracy, sensitivity, specificity, precision and Matthews correlation coefficient. Several experiments are performed on dataset of eddy current signal samples for aircraft structures. The obtained results demonstrate the usefulness of our approach and the competiveness against existing descriptors.Comment: 5 pages, IEEE International Worksho

    Learning defects from aircraft NDT data

    Get PDF
    Non-destructive evaluation of aircraft production is optimised and digitalised with Industry 4.0. The aircraft structures produced using fibre metal laminate are traditionally inspected using water-coupled ultrasound scans and manually evaluated. This article proposes Machine Learning models to examine the defects in ultrasonic scans of A380 aircraft components. The proposed approach includes embedded image feature extraction methods and classifiers to learn defects in the scan images. The proposed algorithm is evaluated by benchmarking embedded classifiers and further promoted to research with an industry-based certification process. The HoG-Linear SVM classifier has outperformed SURF-Decision Fine Tree in detecting potential defects. The certification process uses the Probability of Detection function, substantiating that the HoG-Linear SVM classifier detects minor defects. The experimental trials prove that the proposed method will be helpful to examiners in the quality control and assurance of aircraft production, thus leading to significant contributions to non-destructive evaluation 4.0
    corecore