135,436 research outputs found
Efficient Analysis of Pattern and Association Rule Mining Approaches
The process of data mining produces various patterns from a given data
source. The most recognized data mining tasks are the process of discovering
frequent itemsets, frequent sequential patterns, frequent sequential rules and
frequent association rules. Numerous efficient algorithms have been proposed to
do the above processes. Frequent pattern mining has been a focused topic in
data mining research with a good number of references in literature and for
that reason an important progress has been made, varying from performant
algorithms for frequent itemset mining in transaction databases to complex
algorithms, such as sequential pattern mining, structured pattern mining,
correlation mining. Association Rule mining (ARM) is one of the utmost current
data mining techniques designed to group objects together from large databases
aiming to extract the interesting correlation and relation among huge amount of
data. In this article, we provide a brief review and analysis of the current
status of frequent pattern mining and discuss some promising research
directions. Additionally, this paper includes a comparative study between the
performance of the described approaches.Comment: 14 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1312.4800; and with arXiv:1109.2427 by other author
Constraint-based Sequential Pattern Mining with Decision Diagrams
Constrained sequential pattern mining aims at identifying frequent patterns
on a sequential database of items while observing constraints defined over the
item attributes. We introduce novel techniques for constraint-based sequential
pattern mining that rely on a multi-valued decision diagram representation of
the database. Specifically, our representation can accommodate multiple item
attributes and various constraint types, including a number of non-monotone
constraints. To evaluate the applicability of our approach, we develop an
MDD-based prefix-projection algorithm and compare its performance against a
typical generate-and-check variant, as well as a state-of-the-art
constraint-based sequential pattern mining algorithm. Results show that our
approach is competitive with or superior to these other methods in terms of
scalability and efficiency.Comment: AAAI201
On mining complex sequential data by means of FCA and pattern structures
Nowadays data sets are available in very complex and heterogeneous ways.
Mining of such data collections is essential to support many real-world
applications ranging from healthcare to marketing. In this work, we focus on
the analysis of "complex" sequential data by means of interesting sequential
patterns. We approach the problem using the elegant mathematical framework of
Formal Concept Analysis (FCA) and its extension based on "pattern structures".
Pattern structures are used for mining complex data (such as sequences or
graphs) and are based on a subsumption operation, which in our case is defined
with respect to the partial order on sequences. We show how pattern structures
along with projections (i.e., a data reduction of sequential structures), are
able to enumerate more meaningful patterns and increase the computing
efficiency of the approach. Finally, we show the applicability of the presented
method for discovering and analyzing interesting patient patterns from a French
healthcare data set on cancer. The quantitative and qualitative results (with
annotations and analysis from a physician) are reported in this use case which
is the main motivation for this work.
Keywords: data mining; formal concept analysis; pattern structures;
projections; sequences; sequential data.Comment: An accepted publication in International Journal of General Systems.
The paper is created in the wake of the conference on Concept Lattice and
their Applications (CLA'2013). 27 pages, 9 figures, 3 table
A Constraint Programming Approach for Mining Sequential Patterns in a Sequence Database
Constraint-based pattern discovery is at the core of numerous data mining
tasks. Patterns are extracted with respect to a given set of constraints
(frequency, closedness, size, etc). In the context of sequential pattern
mining, a large number of devoted techniques have been developed for solving
particular classes of constraints. The aim of this paper is to investigate the
use of Constraint Programming (CP) to model and mine sequential patterns in a
sequence database. Our CP approach offers a natural way to simultaneously
combine in a same framework a large set of constraints coming from various
origins. Experiments show the feasibility and the interest of our approach
- …
