79,579 research outputs found
Hot Carrier extraction with plasmonic broadband absorbers
Hot charge carrier extraction from metallic nanostructures is a very
promising approach for applications in photo-catalysis, photovoltaics and
photodetection. One limitation is that many metallic nanostructures support a
single plasmon resonance thus restricting the light-to-charge-carrier activity
to a spectral band. Here we demonstrate that a monolayer of plasmonic
nanoparticles can be assembled on a multi-stack layered configuration to
achieve broad-band, near-unit light absorption, which is spatially localised on
the nanoparticle layer. We show that this enhanced light absorbance leads to
40-fold increases in the photon-to-electron conversion efficiency by the
plasmonic nanostructures. We developed a model that successfully captures the
essential physics of the plasmonic hot-electron charge generation and
separation in these structures. This model also allowed us to establish that
efficient hot carrier extraction is limited to spectral regions where the
photons possessing energies higher than the Schottky junctions and the
localised light absorption of the metal nanoparticles overlap.Comment: submitte
Influence of quantum confinement on the ferromagnetism of (Ga,Mn)As diluted magnetic semiconductor
We investigate the effect of quantum confinement on the ferromagnetism of
diluted magnetic semiconductor GaMnAs using a combination of
tight-binding and density functional methods. We observe strong majority-spin
Mn -As hybridization, as well as half metallic behavior, down to sizes
as small as 20 \AA in diameter. Below this critical size, the doped holes are
self-trapped by the Mn-sites, signalling both valence and electronic
transitions. Our results imply that magnetically doped III-V nanoparticles will
provide a medium for manipulating the electronic structure of dilute magnetic
semiconductors while conserving the ferromagnetic properties and even enhancing
it in certain size regime.Comment: 4 pages, 3 figure
Light dynamics in glass-vanadium dioxide nanocomposite waveguides with thermal nonlinearity
We address the propagation of laser beams in Si02-VO2 nanocomposite
waveguides with thermo-optical nonlinearity. We show that the large
modifications of the absorption coefficient as well as notable changes of
refractive index of VO2 nanoparticles embedded into the SiO2 host media that
accompany the semiconductor-to-metal phase transition may lead to optical
limiting in the near-infrared wave range.Comment: 13 pages, 3 figures, to appear in Optics Letter
3D characterization of CdSe nanoparticles attached to carbon nanotubes
The crystallographic structure of CdSe nanoparticles attached to carbon
nanotubes has been elucidated by means of high resolution transmission electron
microscopy and high angle annular dark field scanning transmission electron
microscopy tomography. CdSe rod-like nanoparticles, grown in solution together
with carbon nanotubes, undergo a morphological transformation and become
attached to the carbon surface. Electron tomography reveals that the
nanoparticles are hexagonal-based with the (001) planes epitaxially matched to
the outer graphene layer.Comment: 7 pages, 8 figure
Functionalisation of colloidal transition metal sulphides nanocrystals: A fascinating and challenging playground for the chemist
Metal sulphides, and in particular transition metal sulphide colloids, are a broad, versatile and exciting class of inorganic compounds which deserve growing interest and attention ascribable to the functional properties that many of them display. With respect to their oxide homologues, however, they are characterised by noticeably different chemical, structural and hence functional features. Their potential applications span several fields, and in many of the foreseen applications (e.g., in bioimaging and related fields), the achievement of stable colloidal suspensions of metal sulphides is highly desirable or either an unavoidable requirement to be met. To this aim, robust functionalisation strategies should be devised, which however are, with respect to metal or metal oxides colloids, much more challenging. This has to be ascribed, inter alia, also to the still limited knowledge of the sulphides surface chemistry, particularly when comparing it to the better established, though multifaceted, oxide surface chemistry. A ground-breaking endeavour in this field is hence the detailed understanding of the nature of the complex surface chemistry of transition metal sulphides, which ideally requires an integrated experimental and modelling approach. In this review, an overview of the state-of-the-art on the existing examples of functionalisation of transition metal sulphides is provided, also by focusing on selected case studies, exemplifying the manifold nature of this class of binary inorganic compounds
Surface and volume plasmons in metallic nanospheres in semiclassical RPA-type approach; near-field coupling of surface plasmons with semiconductor substrate
The random-phase-approximation semiclassical scheme for description of
plasmon excitations in large metallic nanospheres, with radius range 10-60 nm,
is formulated in an all-analytical version. The spectrum of plasmons is
determined including both surface and volume type excitations and their mutual
connections. The various channels for damping of surface plasmons are evaluated
and the relevant resonance shifts are compared with the experimental data for
metallic nanoparticles of different size located in dielectric medium or on the
semiconductor substrate. The strong enhancement of energy transfer from the
surface plasmon oscillations to the substrate semiconductor is explained in the
regime of a near-field coupling in agreement with recent experimental
observations for metallically nanomodified photo-diode systems
Nanostructured semiconductor materials for dye-sensitized solar cells
Since O'Regan and Grätzel's first report in 1991, dye-sensitized solar cells (DSSCs) appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%), the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon. © 2017 Carmen Cavallo et al
- …
