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Since their first report in 1991 by O'Regan and Grätzel, Dye-Sensitized Solar Cells (DSSCs) 

appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far 

less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale 

prototype reported efficiency around 13%), the simple design of the device and the absence of the 

strict and expensive manufacturing processes needed for conventional photovoltaics, make them 

attractive in small-power applications especially in low-light conditions, where they outperform 

their silicon counterparts. Nanomaterials are at the very heart of a DSSC, being the success of its 

design due to the use of nanostructures at both the anode and the cathode. 

In this review we present the state of the art for both n-type and p-type semiconductors used in the 

photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of 

this kind of devices. In the case of p-type semiconductors, also some other energy conversion 

applications are touched upon. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54538567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Part I: n-type semiconductors 

 

Introduction  

A dye-sensitized solar cell (DSSC) is a semiconductor-based photovoltaic device that directly 

converts both artificial and natural (solar) radiation into electric current. In contrast to the 

conventional systems where the semiconductor assumes both the tasks of light absorption and 

charge carrier separation and transport, the two functions are separated in a DSSC. In a 

conventional DSSC, light is absorbed by a sensitizer, which is anchored to the surface of a wide 

band gap n-type semiconductor
[1]

. Often referred to as a Grätzel cell, this hybrid device was first 

reported to the scientific word in 1991 by the seminal publication of Brian O’Regan and Michael 

Grätzel presenting a device made of sensitized nanocrystalline TiO2 with a power conversion 

efficiency of 7.1%
[2]

. DSSCs constitute probably the cheapest photovoltaic technology today 

available and their efficiency has been constantly improved in the last 25 years. The confirmed 

efficiency record is 11.9%
[3]

, achieved by the Sharp company. However, it was Mathew et al. that 

reported the best performing DSSC in literature up to now. DSSCs fabricated utilizing the 

[Co(bpy)3]
2+/3+

 as redox couple and the SM315 dye, demonstrated panchromatic light harvesting 

without the use of co-sensitization, leading to a record efficiency value of 13% under one sun 

illumination
[4]

. DSSC is an eco-friendly technology that can be used to produce electricity in a wide 

range of light conditions, indoor and outdoor. If one considers that dye sensitized solar cells work 

properly also under low irradiation conditions, the efficiencies they reach make the technology 

extremely interesting with respect to conventional solar cells in such conditions. The DSSCs and 

their inventor received prestigious awards, including the Balzan Prize in 2009 and the 2010 

Millenium Technology Prize, the most important technology prize in the word
[5]

. 

 

Device structure and operation principles: brief discussion of components and 

their role in DSSC.  

A simple scheme of the components and of the basic operating principles of a DSSC is reported in 

figure 1. The device is comprised of four components only:  

 

 Nanostructured n-type semiconductor (wide band gap metal oxide) coated over transparent 

conducting substrate (TCO (ITO
[6]

 or FTO
[7]

)). 



 Visible-light absorber dye (several organic dye can be used, such as N3
[8]

, N719
[9]

, N749
[10]

 

(the so-called black dye), K8
[11]

, K19
[12]

, CYC-B11
[13]

 and C101
[2]

). 

 Electrolyte
[14, 15]

. 

 Counter electrode (TCO coated with a platinum layer or other suitable catalyst). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of n-type materials, current is generated when a photon absorbed by a dye molecule 

causes an electron injection into the conduction band of the semiconductor. The dye molecules are 

anchored to the surface of the semiconductor particles by a chemical bond (sensitization). In a 

nanostructured oxide the semiconductor provides a large surface area for dye molecule anchoring. 

The photons are absorbed at the surface of the nanostructure by the dye, promoting its excitation 

and then the electron injection. The photogenerated electrons are injected into metal oxide and the 

dye is regenerated by a redox species present in the electrolyte. The electrons move through the 

semiconductor to a current collector and then to an external circuit. The redox mediator is 

regenerated at the cathode, and the process is cyclic. Each part of the device heavily determines the 

cost and the efficiency of DSSCs. The optimization of light absorption properties can be achieved 

by modifying the dye alone, while charge transport properties can be improved by the optimization 

Figura 1. Device structure of a DSSC. 



of the semiconductor and of the electrolyte composition
[16]

. Thus, in the last years almost all 

research efforts have been focused on the modification of each component for practical 

applications. Ye et al.
 [17]

 reported a scheme of the number of publications for sensitized solar cells. 

The major area of interest was represented by the fabrication of n-type nanostructured 

semiconductor photoanodes with improved architectures for high dye loading and fast electron 

transport. Therefore, this section of the present paper aims at bringing together the various 

contributions brought about by researchers to improve the efficiency of the n-type sensitized 

semiconductors for DSSCs. Moreover, the detailed discussion of the role of band gap, morphology, 

composition and doping of n-type semiconductors for the development of efficient photoanodes will 

be reported. Several contributions are summarized here with the description of nanostructures (0D, 

1D, 2D, 3D and mesoporous nanostructures) and of the effect of doping of photoanodes materials 

(mostly TiO2 and ZnO) on the performances of DSSCs. 

 

Photoanode materials for n-type DSSC.  

Semiconducting nanostructured films are the main core of DSSCs photoanodes. The main issues in 

DSSCs are the charge recombination processes and their relatively low light harvesting capability. 

The photoanode performs a dual function as both the support for the sensitizer and carrier of 

photogenerated electrons from the sensitizer to the external circuit
[17]

. The photoanode material 

should not absorb visible light and should have sufficiently high surface area for optimum dye 

adsorption. 

 In semiconductor terminology, the top of the valence band and the bottom of the conduction 

band are called the valence band edge and the conduction band edge, respectively. The energy of 

the conduction band edge is denoted as ECB; similarly, the energy of the valence band edge is 

denoted as EVB. The energy difference between these levels is called the band gap (Eg). The size of 

this band gap is perhaps the most important property of a semiconductor, as it influences all of the 

most important electronic properties of the material
[18]

. The conduction band edge  of the 

photoanode material should match with that of the excited dye molecules. To efficiently collect the 

photogenerated electrons, the photoanode should have high charge carrier mobility. 

Desirable properties of the material are also the ease to preparation, stability, low cost and 

environmental friendliness. These properties are the defining characteristics of an ideal 

photoanode
[19]

. 

 

 

 



N-type semiconductors 

Probably it was Michael Faraday
[20]

 that made the first significant observation in the semiconductor 

science in 1833 when he discovered the negative temperature resistivity coefficient of silver 

sulfide
[21]

. Nowadays, semiconductors are defined by the unique behaviour of their electrical 

properties. As their name implies, semiconductors possesses an electrical conductivity intermediate 

between conductors such as metals and insulators such as ceramics
[22]

. For high-density electron 

ensembles such a valence electrons in metals, Fermi statistic is applicable. The Fermi level,  

(defined a 0 K as the energy at which the probability of finding an electron is ½) can be regarded as 

the electrochemical potential of the electron in a particular phase (in this case, a solid). Thus, all 

electronic energy levels below  are occupied and those above  are likely to be empty. Electrons 

in semiconductor may be regarded as low-density particles ensembles such that their occupancy in 

the valence ( ) and conduction bands ( ) may be approximated by the Boltzmann function
 [23, 

24]
: 

 

 

 

Now we come to another important distinction between metals and semiconductors in that two 

types of electronic carriers ( ) are possible in the latter. Consider the thermal excitation of an 

electron from  to . This gives rise to a free electron in the and a vacancy or hole in the . 

Thus,  becomes: 

 

 

 

 

 

Where  and  are the effective density of states (in cm
-3

) at the lower edge and top edge of  

and , respectively. These expressions can be combined with the recognition that  to yeld 

 

 

 

 



To provide a numerical sense of the situation,  and  are typically both approximately 

so that the constant (  is about . 

The latter case refers to the semiconductor in its intrinsic state with very low carrier concentrations 

under ambient conditions. The Fermi level, , in this case lies approximately in the middle of the 

energy band gap
[25]

. This simply reflects the fact that the probability of the electron occupancy is 

very high in  and very low in  and does not imply an energy level at  itself that can be 

occupied.  

 In extrinsic semiconductors the carrier concentrations are perturbed such that . The 

analogy with the addition of an acid or base to water is quite instructive here. Consider the case 

when donor impurities are added to an intrinsic semiconductor. Since the intrinsic carrier 

concentrations are low (sub-parts per trillion), even additions in part per billion levels can have a 

profound electrical effect. This process is known as doping of the semiconductor. In this particular 

case, the Fermi level shifts towards the one of the bands' edges. When the donor level is within a 

few kT in energy from the CB edge, appreciable electron concentrations are generated by donor 

ionization process (at ambient temperatures) such that now . This is termed  

doping, and the resultant (extrinsic) semiconductor is called  By analogy,  

semiconductor have . The terms minority and majority carriers now become appropriate in 

these cases. For a  semiconductor case, the Fermi level now lies close to  edge. The 

Fermi level determines the tendency of the semiconductor to transfer charges to other phases. The 

movement of with dopant concentration can also be rationalized via the Nernst formalism
[26]

. 

Doping can be accomplished by adding aliovalent impurities to the intrinsic semiconductor. For 

example, P (a group 15 or VB element) will act as a donor in Si (a group 14 or IVB element). This 

can be rationalized on chemical terms by noting that P need only four valence electrons for 

tetrahedral bonding (as in Si lattice) the fifth electron is available for donation by each P atom. The 

donor density,  nominally is approximately . Thus, assuming that  (complete 

ionization at 300 K),  will be only approximately  [recall the product ], 

bearing out the earlier qualitative assertion that . 

Impurity addition, however, is not the only doping mechanism. Non-stoichiometry in compound 

semiconductors such as CdTe also gives rise to - or - type behaviour, depending on whether Cd 

or Te is in slight excess, respectively. For metal oxides, doping with suitable cation/anion modifies 

band gap and may modulate their electrical properties. The defect chemistry in these solid 

chalcogenides controls their conductivity and doping in a complex manner. Excellent treatises are 

available on this topic and on the solid-state chemistry of semiconductors in general
[27]

. The 



distinction between metal and semiconductor electrodes is important when we consider the 

electrostatics across the corresponding solid-liquid interfaces (MOS/electrolyte in DSSC).  

 

 

N-type semiconductor-electrolyte interface 

The electrochemical potential of electrons in a redox electrolyte is given by the Nernst expression  

 

 

 

where  and  are the concentrations of the oxidized and reduced species, respectively, in the 

redox couple. The parameter (  as defined by this equation can be identified with 

the Fermi level ( in the electrolyte. When a semiconductor is immersed in this redox 

electrolyte, the electrochemical potential (Fermi level) is disparate across the interface. 

Equilibration of this interface thus necessitates the flow of charge from one phase to the other and a 

“band bending” ensues within the semiconductor phase. For an n-type semiconductor (TiO2) 

electrode at open circuit, the Fermi level is typically higher than the redox potential of the 

electrolyte, and hence electrons will be transferred from the electrode into the solution. Therefore, 

there is a positive charge region, and this is reflected in an upward bending of the band edges 
[28]

 

(see figure 2). Since the majority charge carrier of the semiconductor has been removed from this 

region, the latter is also referred to as the depletion layer.  

 

 

 

 

 

 

 

 

 
Figure 2. Band bending for n-type semiconductor in equilibrium 

with electrolyte. 



N-type nanostructured semiconductor for DSSCs 

Nanostructured materials present a specific surface area significantly larger than that of the 

corresponding bulk materials. The nanoscale size may also effect the behaviour of electrons 

transport in nanostructures in view of a limit to the electron mean free path. This is called quantum 

confinement effect 
[29-31]

. The quantum confinement effect is observed when the size of the particle 

is too small to be comparable to the wavelength of the electron. On the optics side, by forming 

photonic band gap, periodic nanostructures (know as a photonic crystals) also show to be special in 

light manipulation and management through generating optical confinement or photonic 

localization
[32-35]

. These unique properties of nanomaterials received considerable attention and 

have been extensively investigated for applications in electronic, optoelectronic, photovoltaic, 

photocatalytic, and sensing devices
[36-40]

. The metal oxides in their nano-form can be synthesized 

under various morphologies with different shapes and sizes thus offering the possibility for 

modulating their properties. 

 The crystallinity of the metal oxides should be high to prevent the recombination of e
-
 and 

h
+
. Ohtani et al. clarified that the photocatalytic activity of TiO2 powders strongly depends on its 

physical properties such as crystal structure, surface area, particle size, surface hydroxyls and so 

on
[41]

. In literature, a variety of preparation techniques, such as sol-gel
[42]

, 

hydrothermal/solvothermal
[43,44]

, electrochemical anodization
 [45]

, electrospinning
 [46-47]

, spray 

pyrolysis
[48]

 and atomic layer deposition
[49]

 have been developed and applied to obtain different 

morphologies in photoanode materials. Asim et al. summarized the different preparation and 

deposition methods, which have been used for photoanode materials of DSSCs, emphasizing their 

advantages and disadvantages, in order to allow a researcher to carefully choose and optimize a 

given method
[50]

. Perez-Page et al. presented several methods based on templates for shape-

controlled nanostructuring. A variety of nanostructured materials are produced through template-

based syntheses, including zero-dimensional (nanoparticles), one-dimensional (nanowires, 

nanotubes,…), two dimensional (nanoflakes and nanosheets) structures
[51]

. In 1995, Antonelli and 

Ying for the first time reported the synthesis of mesoporous TiO2, which was accomplished through 

a modified sol-gel process involving TIP (titanium isopropoxide) as a precursor
[52]

. Later, various 

procedures have been developed for the synthesis of mesoporous materials. In 2001 Grosso et 

al.
[53]

, Yun et al.
[54]

 and Hwang et al.
[55]

 reported syntheses of mesoporous titania films in the 

anatase phase. In the development of a simple and general methodology for the synthesis of highly 

organized mesoporous metal oxide, Sadatlu et al. proposed a novel and effective strategy
[56]

. 

 

 



Nanoparticles-based semiconductors (OD nanostructures) 

A typical DSSC photoanode is composed of nanocrystalline semiconductors. Sufficient light 

absorption is achieved by the nanocrystalline form of the semiconductor, because a large internal 

surface area increases the dye concentration in the film per unit device area. Wide band gap metal 

oxide semiconductors (MOS) (Eg > 3eV)
[57]

 such as TiO2
[58-60]

, ZnO
[61-67]

, SnO2
[60, 68, 69-71]

 and 

Nb2O5
[72-74]

, have been studied more or less extensively and used as photoanode materials for DSSC 

devices. These MOSs present good stability against photocorrosion ,transparency in the major part 

of the solar spectrum, and good electronic properties
[75-78]

. Photocorrosion, which is caused by the 

oxidation by holes (generated through band gap excitation) of the redox species in the electrolytes, 

may affect the performance of the semiconductor. 

 TiO2 is a low cost, widely available, non-toxic and biocompatible material. It has been used 

in health care products as well as in domestic applications such as paint pigments
[16]

. On the other 

hand, ZnO, which has a similar conduction band edge and work function compared to TiO2, but 

with a higher carrier mobility than TiO2, was considered as a promising photoanode materials for 

DSSCs. However, the instability of ZnO in acidic environment and formation of dye aggregates on 

its surface deteriorate its performances
[79]

. This is probably due to its acidic surface and more 

positive (vs NHE) conduction band edge position compared to TiO2. Some other semiconductor 

materials, such as Zn2SnO4
[80]

, CeO2
[81]

, WO3
[82]

, SrTiO3
[83]

, In2O3
[84]

 and Al64Cu25Fe11 
[85]

 were 

also studied. Alami et al. evaluated the suitability of the Al64Cu25Fe11 intermetallic compound to 

enhance spectral solar absorption when replacing the mesoporous layer material of DSSCs. Zheng 

et al.
[86]

 presented for the first time a complete study on WO3 as photoanode material for DSSC. 

 The efficiency of DSSCs using these materials with a suitable redox electrolyte should be 

around 10-15% under one sun irradiation. The main issues in DSSCs are charge recombination 

processes and their relatively low light harvesting efficiency. As stated before, the photoanode 

performs a dual function as both the support for the sensitizer and carrier of photogenerated 

electrons from the sensitizer to external circuit
[17]

. In this regard, a major benefit of using 

nanostructured materials in DSSCs is that the resulting photoelectrode films are highly porous. 

Porous nanostructures offer a larger surface area for dye absorption compared to a bulk material. 

Among all semiconductor oxides, porous, anatase phase titanium dioxide (TiO2) is the best and 

most common choice for high-efficiency DSSCs due to its low-cost, easy synthesis, non-toxicity 

and biocompatibility
[87]

. A photoanode based on nanosized TiO2 crystals with various geometries 

such as nanoparticles
[88]

, ordered meso-structured materials
[89, 90]

 and one-dimensional structured 

materials e.g. nanorods, nanowires and nanotubes
[91,92]

 have been extensively studied. Up to now, 

the most efficient DSSCs are based on TiO2 nanoparticles owing to their integrated advantage in 



porosity, dye absorption, charge transfer, and electron transport. Moreover, electron transport in 

nanoparticles films suffer from trapping/detrapping processes
[93]

. Trapping is an important effect 

affecting the electron lifetime in the semiconductor, significantly reducing the electron diffusion 

length, . In order to have a quantitative collection of electrons at the anode, the condition 

 should be satisfied, with d being the semiconductor film thickness. Quaranta et al.
[94]

 

showed that  can be increased by a given quantity of functionalized multiwalled carbon 

nanotubes (MWCNTs) coated by nanostructured TiO2-anatase. Moreover, other 0D structured 

photoanodes were used to prevent this drawback of nanoparticles. Chen et al.
[95]

 prepared a core-

shell structure that consisted of a nanoporous TiO2 film coated with oxides such as Nb2O5, ZnO, 

SrTiO3, ZrO, Al2O3 and SnO2. Moreover, Palomares et al. explained the growth of conformal metal 

oxide insulating overlayers (SiO2, Al2O3, and ZrO2 overlayers) on preformed nanocrystalline TiO2 

films, focusing on the ability of such insulating layers to retard interfacial recombination dynamics 

and thereby modulate the performance of DSSCs fabricated using these films
[96]

.  

 The best performance in DSSCs has been achieved with the anatase form of TiO2
[97, 98]

. On 

the other hand, relatively little attention has been paid to the rutile form of TiO2. Park et al.
[99]

 

studied a rutile TiO2 -based DSSC
[100]

. Rutile is the thermodynamic stable polymorph of TiO2 that 

forms when less stable polymorphs are heated at temperatures over 700 °C. Therefore, the synthesis 

temperature of rutile TiO2 is a potential issue for use in DSSCs since nanocrystalline morphology is 

hardly preserved at high temperatures. Moreover, the anatase form is preferred because of its higher 

band gap (3.2 eV) compared to rutile (~3 eV). High band gap energy makes anatase chemically 

more stable in DSSCs
 [101]

. 

Fan et al. reported band gap positions and values of several commonly used semiconductors, as is 

shown in figure 3:  

 

 

 

 

 

 

 Figure 3. Band gap positions of several semiconductors relative to energy of some 

redox couples in contact with aqueous electrolyte at pH=0
[Adapted from 102]

. 



 

The solid state physics community has adopted the electron energy in vacuum as a reference, 

whereas chemists have traditionally used the normal hydrogen electrode (NHE) as energy reference. 

NHE lies at -4.5 eV with respect to the vacuum level. We can now relate the redox potential  

(as defined with reference to NHE) with the Fermi level   

 

 

 

Parameters related to the band gap position are the flat-band voltage ( ) and flat-band capacitance 

( ). Material properties such as oxide charge, semiconductor carrier density, and the effective 

work function of the metal can be obtained directly from  and  
[103, 104]

. 

The standard method for determining the flat-band parameters is through Mott-Schottky plots. 

Generally, a three electrode single compartment configuration was adopted for capacitance analysis 

used to obtain Mott-Schottky plots. MOS coated on conducting glass was used as working electrode 

while platinum and standard calomel electrode (SCE) were used as counter and reference electrodes 

respectively. To measure the capacitance, oxide coated plates were immersed in 0.5 M Na2SO4 

solution and the capacitances were measured as a function of the potential across the space charge 

layer at different frequencies
 [105]

. Shifting of the flat-band potentials of semiconductors plays an 

important role determining their photoelectrochemical properties as thin oxide films and powders. 

The shifting of  can be harnessed in solar energy conversion processes in several ways. In 

DSSCs, the open circuit voltage ( ) is determined by the difference between the quasi-Fermi 

level of electrons in the oxide film and the energy of the redox couple in the electrolyte
[106]

. 

Consequently, the shift of  potential in the negative direction results in increase in barrier height 

and hence in the attainable  of the solar cell. Similarly, the flat band potential can be shifted 

negatively in order to electrolyze a redox couple that is otherwise too positive in the 

electrochemical series to be reactive at the illuminated semiconductor surface
[107, 108]

. Park et al. 

also reported the relative flat band potential and conduction band energies of some oxides such as 

TiO2, ZnO, SnO2, Nb2O5, FeTiO3 and Ta2O5 and sulphides that could be used for DSSCs when 

considering only conduction band energy positions
[Adapted from 99]

 (figure 4).  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High ordered nanostructures (1D nanostructures: nanowires, nanotubes, etc.) 

A major feature that discriminates various types of nanostructures is their dimensionality. Low-

dimensional nanostructures have an aligned structure that can act as a single crystal, thus facilitating 

the rapid electron transport in unidirectional manner and show potentiality for obtaining high 

performance devices
[109]

. Zhang et al. classify the nanostructures, presenting nanoparticles 

advantages (offer large surface area to photoelectrode film for dye absorption) and drawbacks 

(electron transport by trapping and detrapping processes, which may result in energy losses). In this 

regard, one-dimensional nanostructures such a nanowires and nanotubes provide direct pathways 

resulting in a much faster electron transport than in the nanoparticles films
[110]

. However, 

nanoparticles are advantageous in providing large surface area for dye absorption. Law et al.
[111]

, 

for the first time in 2005, presented a comparison between a DSSC made with a ZnO films made of 

nanoparticles and nanowires to demonstrate that one-dimensional nanostructures may provide direct 

pathways for electron transport in DSSCs. A high-performance nanowire photoanode must have a 

Figure 4. Conduction band energies and flat band potentials of metal 

oxides and sulphides at pH=1 (NHE) or vacuum level
[Adapted from 99]

. 



large surface area for dye adsorption, comparable to that of a nanoparticle film. At one sun 

irradiation the device presented an efficiency value between 1.2–1.5%. In the same year, Baxter and 

Aydil
[112]

 first fabricated ZnO nanorod-based DSSC by using a hydrothermal method; they achieved 

an overall photoelectric conversion efficiency of 0.5%. Since then, 1D nanostructures of ZnO 

(nanorods and similar: Martinson et al., 2007
[113]

; Schlur et al., 2013
[114]

; Sadia Ameen et al., 

2012
[115]

; McCune et al., 2012
[116]

; Guo et al., 2013
[117]

) have been widely investigated as 

photoelectrodes for enhancing the DSSCs performances
[118]

. Other ZnO based 1D structures have 

been investigated for photoanodes. Kim et al. studied the performance of ZnO nanofibers
[119]

, Tan 

et al. constructed ZnO nanorods arrays on ITO glass
[120]

 and Yang et al. prepared ZnO nanotips on 

rough Zn microtip foil
[121]

.  

 ZnO based DSSCs with delicately designed nanostructures, from irregular microrods to 

nanosheets with simply adjusting the dosage of capping agents in the hydrothermal synthesis 

process, were fabricated to study the photovoltaic performances vs. morphology. In figure 5, SEM 

micrographs of as-synthesized ZnO structures evolving from microrods to nanosheets are 

reported
[122]

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TiO2 nanowires in standard DSSC configuration gave an overall conversion efficiency of 5%, 

which is much higher than those reported for ZnO nanowires
[66, 123]

.  

Figure 5. SEM micrographs of as-synthesized ZnO structures evolving from microrod to 

nanosheet with the dosage of HMTA ((CH2)6N4) from 0 g to 1.2 g
[122]

. 



In addition, the other TiO2 1D nanostructures gave higher efficiencies than ZnO based ones. TiO2 

nanorods, for example, were synthesized by Chen et al. via a microemulsion electrospinning 

technique. The authors observed a power conversion efficiency of 8.53%, which originated from the 

large structure of nanorods
[124]

.  

 The most studied class of one-dimensional nanostructures is that of nanotubes. The 

recombination rate for TiO2 nanotubes is ~10 times lower than that of nanoparticles
[125]

. Their 

hollow structure usually gives a larger surface area than that nanowires or nanorods. Roy et al. 

presented a complete review of the current status of the use of TiO2 nanotubes in Grätzel cells
[126]

. 

Since the first results in 2005 with efficiencies of 0.04%, reproducible efficiency results in the order 

of 4–5% have been obtained. The best morphology reported is called bamboo-type rings. This may 

be achieved in various ways by modifying the tube walls with porous materials (double-walled 

tubes). During this last year, Momemi presented a study on Cr-doped TiO2 nanotubes
[127]

. The 

effect of chromium doping on the photovoltaic efficiency of dye-sensitized solar cells (DSSCs) with 

TiO2 nanotubes prepared by an anodization procedure followed by an annealing process was 

investigated. He reported an interesting comparison between different doped nanotubes. In table 1 

the obtained results are reported.  

 

 

Photoanodes     (%) References 

TNs 7.21 0.65 0.45 2.13 [128] 

CdSe/TNs 6.19 0.438 0.495 1.56 [129] 

P3HT/CdS/TNs 3.00 0.7 0.55 1.16 [130] 

CdS/TNs 5.17 0.77 0.47 1.87 [131] 

ZnS/CdSe/CdS/TNs 13.52 0.48 0.53 3.44 [132] 

WO3/TNs 6.74 0.72 0.483 2.343 [133] 

Cr/TNs 10.56 0.69 0.534 3.895 [127] 

 

Table 1. Comparison of DSSC photovoltaic parameters of Cr-doped nanotubes with similar  

studies as Momemi reported
[127]

. 

 



 ZnO nanotubes have been also studied for application in DSSCs. The utility of high surface 

area Al-doped ZnO (AZO) nanotubes for DSSC application was studied by Martinson et al.
[113]

. 

Compared to similar ZnO-based DSSCs, the AZO nanotubes show superior photovoltage and fill 

factors with photoconversion efficiencies up to 1.6%. Xie et al. prepared a novel type of coaxial 

TiO2/ZnO nanotube arrays for DSSCs. The obtained efficiency is 2.8%, due to enhanced charge 

separation effect in this structural arrangement
[134]

. A smaller portion of literature is devoted to 

other TiO2 one-dimensional nanostructures, for example nanospindles
[135, 136]

, electrospinning 

materials
[137]

 and nano-embossed hollow structure (NeHS-TiO2)
[138-140]

. In particular, one-

dimensional hierarchical structure with hollow or porous interiors are considered promising 

structures due to the longitudinal pathways of the hollow or porous interior structures and the 1D 

interconnected nanocrystal network that allows for efficient electron transport
[141]

. Wang et al. 

reported 1D titania with tuneable structural hierarchy that exhibits about 1.3-1.5 times higher power 

conversion efficiency than commercial P25 as photoanode material for DSSCs
[142]

. Zhu et al. 

synthesized ZnO nanorods-nanosheets (NR-NS) hierarchical architecture
[143]

. 

 

Combination of 1D nanostructures (2D nanostructures) 

A combination of nanowires, nanotubes and nanoparticles create 2D nanostructures that are 

significant for their sufficiently high surface area available for dye loading. In the hybrid structures, 

the resulting photoelectrode film presents the advantages of the one-dimensional nanostructures and 

the exposed surface area could offer more space for dye absorption and electron conveyance. Most 

research was performed on the array films of ZnO and TiO2 nanowires or TiO2 nanotubes filled 

with ZnO or TiO2 nanoparticles
[144]

. In table 2 some 2D hybrid nanostructures used as photoanode 

of DSSC are reported.  

 

 

 

 

 

 

 

 

 

 

 



Type   (%) Ref [n°] 

TiO2 nanorod array  1.90 [145] 

TiO2 nanoflower 1.53 [145] 

TiO2 nanodisk 6.6% [146] 

TiO2 bilayer nanoribbons 5.6% [147] 

TiO2 nanoflakes 8.2% [148] 

Fill-up ZnO nanowire array 

with nanoparticles  

2.2-3.2%  

(0.5-0.8% ZnO nanowire only) 

[149] 

[150] 

Indium-doped ZnO (IZO) 

nanosheet  

~7% [151] 

Table 2. Some combination of 1D nanostructures and their respective photoconversion  

efficiencies as reported in literature. 

 

3D nanostructures (hierarchic nanostructures, composite, multilayer and thin film materials) 

As we have seen until now, electron transport in nanoparticle films is via a random route with 

multiple trapping and detrapping events. This mechanism seriously affects the electron diffusion 

coefficient and the electron collection efficiency. Moreover, small sized particles show inefficient 

light scattering ability, which results in poorer light-harvesting efficiency. On the other hand, 1D 

and combination of 1D (2D) nanostructures attracted much attention in DSSCs owing to the 

improvement of the charge collection efficiency, which ascribes to a faster electron transport and 

slower recombination rate. However, the low surface area of 1D nanostructures hinders significant 

improvement of the photovoltaic performance owing to poor dye loading compared to 

nanoparticles. For a better balance of those three factors (surface area, light-scattering and electron 

transport), bi-/trifunctional hierarchical structured materials consisting of nanoparticles/nanorods, 

have been widely investigated as photoanodes for DSSCs. These structures demonstrated enhanced 

photovoltaic performance due to their superior dye adsorption properties, light scattering ability and 

faster electron transport compared to traditional nanoparticle only-based DSSCs
[152]

. Liao et al. in 

2011 presented the effect of TiO2 morphology on photovoltaic performance of DSSCs with 

particular attention on hierarchical structures
[153]

. Chen and Yang
[154]

 presented a series of works in 

which they demonstrated the viability of new photoanode architectures in DSSCs comprising 

building blocks of ZnO nanoplates
[155]

, and TiO2 nanosplindles
[156]

. Recently, they presented a 

systematic study about DSSCs based on ZnO nanotetrapods-based photoanodes
[157]

 and ZnO 

nanotetrapods/SnO2 nanoparticles composite photoanode
[158, 159]

. Other authors report ZnO 3D 



nanostructure (e.g. caterpillar-like nanorods ( )
[160]

, nanodendrites ( )
[161]

) based 

photoanodes that show significant photoconversion efficiencies for DSSC application.  

 Grätzel et al.
[162]

 introduced a novel photoanode with a nanoscale structure that resembled a 

forest, fabricated by pulsed laser deposition (PLD) under relatively high background gas pressures. 

This new nanostructure, which they named “nanoforest,” replaces the traditional random 

nanoparticle oxide network by vertically aligned bundles of TiO2 oxide nanocrystals. Grätzel 

speculated earlier that a structure combining the high surface area of nanoparticles with the electron 

transport directionality of vertical rods would be optimal for DSSCs
[16]

. 

 Another approach to the improvement of DSSC is the enhancement of the conduction band 

level relative to the electrolyte redox/oxidation level that would result in higher photovoltage
[163]

. 

Nb2O5 is an example of one such n-type transition metal oxide with a higher conduction band edge 

than TiO2. Ghosh et al., for the first time reported the fabrication of a Nb2O5-based photoanode with 

a nanoforest structure and the results of investigations of the photovoltaic properties of this material 

under a variety of key growth parameters (layer thickness, background gas pressure and 

composition)
 [73]

.  

Other efficient TiO2 3D nanostructures producing good efficiency values are branching nanorods 

)
[164]

, dendritic hollow structures 
[165]

, bridge nanotubes (
[166]

, 

etc. Photoanodes made of two or more materials have attracted attention due to the obvious 

advantages of combining different materials. Yan et al.
[167]

 combined the high electron transport 

rate of ZnO and the high electron injection efficiency of TiO2 with Ru-based dyes. Huu et al.
[168]

 

presented a hierarchical photoanode comprising a SnO2 nanoparticle underlayer and a ZnO nanorod 

overlayer and its photovoltaic performance was compared to photoanodes consisting of SnO2 

nanoparticles only and ZnO nanorods only.  

Satapathi et al presented a DSSC fabricated using photoanodes made from graphene-TiO2 nano-

composites
[169]

. The relationship between the size of graphene sheet and the cell performance was 

explored. It was concluded that the cells loaded with the smaller graphene sheets yielded larger 

enhancement. The maximum efficiency was obtained by 184 nm sheets with 6.62 %.  

Also composite TiO2 anatase materials with CaTiO3
[170]

, and BaTiO3
[171, 172]

 have been applied to 

electrodes for DSSCs. Among perovskite-type compound, BaTiO3 is a n-type semiconductor with 

band gap energy of 3.3 eV. Such band gap value may increase the open circuit voltage of a DSSC 

as Suzuki and Kijima reported in 2005
[173]

.  

Manoharam and Venkatachalam investigated the photoelectrochemical performances of DSSCs 

based on aluminium doped titanium dioxide (Al-TiO2) nanoparticles/nanowires (TNPWs) 



composite photoanode layers, with different electrolytes. The maximum obtained efficiency is 

7.26%
[174]

. 

An efficiency value of 3.44% has been reported by Xu et al.
[175]

 using as double scattering layer a 

ZnO film consisting of ZnO monodisperse light scattering layer and a submicrometer-sized plate-

like ZnO film as overlayer in the photoanode of a DSSC. Ghanbari et al. presented a new strategy 

for improving the efficiency of TiO2 DSSCs by design of a new double-layer film doped with Zn 

ions, with various morphologies
 [176]

. 

 

Mesoporous structures (3D oxide aggregate nanostructures) 

Among 3D nanostructures, mesoporous MOS-based materials (in particular titania-based) with a 

crystalline framework, high specific surface area and tuneable pore size have received significant 

attention for energy conversion applications. Several morphologies such as mesoporous TiO2 

films
[177]

, beads
[178]

, monoliths
[179]

, networks
[180]

, with controlled porosity have been prepared via 

different synthetic strategies. The most interesting are monodisperse TiO2 beads with a 

submicrometric-sized diameter. Chen et al.
[181]

 reported the synthesis of monodisperse mesoporous 

anatase titania beads with high surface area and tunable pore size and grain diameter via a 

combination of sol-gel and solvothermal processes in presence of hexadecilamine (HDA) as a 

structure-directing agent. In this way they enhanced the light-harvesting capability of TiO2 

electrode without sacrificing the accessible surface for dye loading. These mesoporous TiO2 beads 

have a diameter of less than 1 µm and are composed of anatase TiO2 nanocrystals. The beads have 

been used in the preparation of photoanodes for DSSCs and an improved efficiency was observed 

when compared to analogous cells prepared using standard Degussa P25 TiO2 photoanodes of 

similar thickness. An overall light conversion efficiency of 7.20% (open-circuit voltage (Voc) 

777mV, short-circuit current density ( ) 12.79 and fill factor (FF) 0.72) was achieved 

using the mesoporous TiO2 bead electrodes
[182]

. The substantial improvement of  and  for the 

hierarchical sphere-based DSSC when compared to other nanostructure-based DSSCs is mainly due 

to the larger dye loading, higher light scattering ability, faster charge transport, and longer electron 

lifetime
[183, 184]

. Submicrometric mesoporous TiO2 beads are also used to form a scattering layer on 

top of a transparent, 6-mm-thick, nanocrystalline TiO2 film. Later, Grätzel and Chen presented 

DSSCs with photoanodes made of mesoporous TiO2 beads that achieved a power conversion 

efficiency over 10%
[185]

. Kim et al.
[186]

 reported a two-step method for the synthesis of TiO2 

aggregates which first produced TiO2 spheres via a controlled hydrolysis and then etched the 

spheres under hydrothermal conditions. These aggregates, applied to DSSCs, yielded an efficiency 

as high as 10.5%.  



 In addition, ZnO spheres were used to enhance the performances of ZnO-based DSSCs. 

These latter were synthesized by hydrolysis of a zinc salt in polyol medium
[187]

. A significant 

difference in the conversion efficiency values (2.4 % and 5.4% for ZnO nanoparticles and 

aggregates, respectively) has been verified. The explanation of this difference is based on the 

consideration that ZnO is not stable in an acidic dye solution and the formation of a Zn
2+

/ dye 

complex on the surface of ZnO may seriously hinder the electron injection process from the dye 

molecules to the semiconductor
[188]

. In the case of film made of ZnO nanoparticles, the formation of 

complex on the film surface would block the pores and result in an incomplete infiltration of dye 

molecules
[189]

. However, the situation is quite different in the case of aggregates. Due to the 

existence of large pores among the submicron-sized aggregates, the dye penetration can be 

accomplished in a very short time (for example, 30 min) prior to the formation of the complex 

layer
[187, 190]

. Other mesoporous structures have been investigated for DSSCs applications. The use 

of preformed mesoporous solid as hard templates allows for the preparation of novel mesostructures 

of TiO2 with high crystallinity. Moreover, hard templates can provide an excellent support and 

confinement framework to prevent collapse of mesoporous structures, thus allowing for high 

crystallinity. All these characteristics are found in mesoporous single crystals (MSC) of anatase, 

which were first prepared by Crossland et al.
[191]

. The MSC anatase displays higher conductivity 

and electron mobility than those of conventionally used nanoparticles. In solid-state DSSCs they 

obtained a power conversion efficiency of 7.2%. Latini et al.
 [192]

 used MSC as photoanode for 

conventional DSSCs in a comparison between hard and soft template based materials. Five different 

anatase phase mesoporous titanias were used as photoanodes in DSSCs: two materials were 

synthesized by using silica nanospheres (hard template) and the other three using two different 

organic polymeric templating agents, P123 and Brij 58 (soft template). Unexpectedly, MSCs are the 

least suitable for application in DSSCs because of their low specific surface area. Finally, Zhao et 

al. developed a simple surfactant-sulfuric acid carbonization method to synthesize ultrastable 

ordered mesoporous titania with high crystallinity
[193]

. 

 

Doping and co-doping effect on nanocrystalline and mesoporous structures. 

In addition to the optimization of the oxide nanostructure, the combined use of different metal 

oxides and/or the use of doped materials with higher conduction band energies should, in principle, 

allow further improvement of DSSCs performances. In metal oxides, the doping with suitable 

cation/anion modifies the band gap and may modulate their electrical proprieties. The properties of 

titania, including anatase to rutile phase transition as well as the photoactivity greatly depend on the 

presence of dopants, i.e. cations
[194]

 and anions
[195]

, impurities, as well as on the crystallinity
[196, 197]

, 



grain size, surface area, and so on, in addition to the presence of such substances as amorphous 

silica at the interfaces and/or grain boundaries. All these properties have a profound influence on 

the mass transfer rate, diffusion, and crystallite growth of titania in composite nanoparticles
[198]

. 

 The ionic radii of niobium Nb
5+

, aluminum Al
3+

, gallium Ga
3+

, yttrium Y
3+

 and scandium 

Sc
3+

 are quite close to that of titanium Ti
4+

. Solid solutions of these cations in titania have been 

prepared and characterized
[199]

. For example, Grätzel et al. studied the effect Ga
3+

 and Y
3+

 in 

mesoporous anatase and of Nb
5+

 in nanocrystalline anatase for DSSCs photoanodes
[200, 201]

. Latini et 

al.
[105]

 reported the beneficial effect on the performances of DSSCs of Sc
3+

 doping of mesoporous 

anatase beads. At 0.2% of Sc atoms a maximum efficiency of 9.6% was obtained, which was found 

to be 6.7% greater than the efficiency of DSSCs with pure anatase. Li et al.
[202]

 reported a DSSC 

based on TiO2 photoanode that was modified by the Al-doped TiO2 layers using the chemical bath 

deposition method. The Al-doped TiO2 layer improved the photocurrent density. The effect of a co-

dopant M (M= Ga, Al, Sc) on the formation, crystallite growth, optical band gap, photocatalytic 

activity, and phase stability of anatase-type TiO2 solid solutions (Ti1-2XNbXMXO2) containing the 

same amount of dopant Nb that were directly formed as nanoparticles under mild hydrothermal 

conditions at 180°C for 5h, was investigated by Hirano and Ito
[203]

. The effect of lanthanum ions 

(La
3+

) on charge trapping in dye-sensitized solar cell (DSSC) photoanodes has been investigated 

with doped and surface-treated TiO2 nanoparticles
[204]

. Including those mentioned before, transition 

metal dopants in general could extend the photoresponse in the visible light region. This is due to 

low energy photon excitations of the corresponding metal oxide clusters with smaller band gap and 

partially from the excitations of the introduced localized states in the band gap of doped TiO2
[205]

. 

 On the other hand, nonmetal dopants (N, C, B, S, P, etc.) can exist as isolated atoms rather 

than clusters, which have greater potential for realizing visible-light photoactivity
[206]

. In anion 

doped TiO2 the formation in the oxide phase of new defect levels slightly above the valence band 

generally cause the red shift of absorption spectrum
[207-211]

. Pan et al., for example, presented the 

enhanced efficiency of DSSCs by trace amount Ca-doping of TiO2 photoelectrodes. The best 

photovoltaic performance was obtained from 50 ppm Ca-doping with a conversion efficiency of 

7.45%
[212]

. In table 3 some useful dopants for anatase TiO2 have been grouped together as well as 

their respective photoconversion efficiencies as reported in literature.  

 

 

 

 



Doped-TiO2                       Reference 

B 6.1% [213] 

Ce 7.65% [214] 

Cr 8.4 [215] 

Mg 1.2% [216] 

N 6.25% [217] 

Nb 7.41%, 7.8%, 8.7% [218-220] 

Sb 8.13% [221] 

Sn 8.31% [222] 

Tm/Yb  7.5% [223] 

Ta 7.1% [224] 

W 9.10%, 7.42% [104, 225] 

 

Table 3. DSSC efficiency of several doped-TiO2 photoanodes. 

 

 

The amount of papers dedicated to systematic studies of the effect of heteroatoms and their 

concentration in the anatase lattice on the performances of DSSCs are far less numerous. Cavallo et 

al.
[226]

 have undertaken a systematic work of synthesis, characterization and test of DSSC 

photoanodes containing mesoporous anatase bead doped with RE (rare earth) cations (Nd, Sm, Gd, 

Er and Yb). The maximum efficiency has been obtained for the sample containing 0.2% Er metal 

atoms (8.7%).  

Similarly, papers dealing with doping of ZnO with different cations and anions are also present in 

literature, as reported in table 4.  

 

 

 

 

 

 

 

 



Doped-ZnO                       Reference 

Al 0.28%, 0.964% [227, 228] 

Ga 4.01% [229] 

I 4.5% [230] 

K 0.012% [231] 

Mg 4.19%, 4.11% [232, 233] 

N 5% [234] 

 

Table 4. DSSC efficiency of some doped-ZnO photoanodes. 



Part II: p-type semiconductors 

 

 

Introduction 

In the recent past there has been a crescent interest towards the development and the realization of 

solar radiation conversion devices in which an electrochemical process of reduction is 

photoactivated via the absorption of light by a cathode either in the pristine
[235-239]

 or in a 

modified/sensitized state
[240-266]

. These devices are photoelectrochemical cells (PECs)
[40, 87]

 with 

photoactive cathodes consisting of p-type semiconducting materials, and include p-type dye-

sensitized solar cells (p-DSCs) (Figure 6)
[241, 242, 247, 248, 266]

, tandem DSCs (t-DSCs) (Figure 7)
[267-

271]
 cells of photoelectrolysis for non fossil fuels production, namely molecular H2 in the process of 

water splitting (Figure 8)
[272-283]

, and for carbon dioxide redox reduction (Figure 9)
[284-315]

. The 

initial charge separation produced as a consequence of light absorption
[314,315]

 can occur either 

directly on the p-type semiconductor (Figure 9), or on the electrically connected sensitizer which 

accomplishes successively the transfer of charge according to the vectoriality imparted by the 

relative positions of the energy levels of the electronic states involved, and by the kinetics of the 

possible redox reactions (Figures 6-8).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Diagram of the electrical potential E levels involved in the process of photoactivated 

electron transfer (et) at the basis of the operation of a p-DSC. The separation evidenced by the 

double arrow (1) represents the open circuit voltage VOC of the p-DSC. The latter parameter is 

determined by the difference between the Nernst level of the redox couple (I3
-
/I

-
, in the given 

example), and the Fermi level of the p-type semiconducting electrode (NiO in the reported 

example). Bent full arrows represent the dye-mediated et from the p-type cathode to the oxidized 

form of the redox couple. The et process is catalysed by the dye sensitizer D through the absorption 

of light with frequency ν. Dotted arrows (2) and (3) describe two processes of electronic 

recombination following the separation of charge induced by light absorption.  

Figure 7. Diagram of the electrical potential E levels involved in the process of photoactivated 

electron transfer (et) at the basis of the operation of a t-DSC. The separation evidenced by the 

double arrow (1) represents the open circuit voltage VOC of the t-DSC. The latter parameter is 

determined by the difference between the Fermi levels of p-type cathode and n-type anode. Bent full 

arrows represent the dye-mediated et processes from the photoelectrodes to the corresponding 

forms of the redox couple (I3
-
/I

-
, in the given example). The et processes are catalysed by the dye 

sensitizers D and D with complementary light absorption properties.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Depiction of the mechanism of photoactivated et from p-type NiO to 

H
+
 mediated by the multifunctional dye-sensitizer PMI-4T-TPA for the 

production of H2 fuel. The organic dye is immobilized onto NiO surface through 

the carboxylic group (in violet). The dye-sensitizer acts as electron donor 

(through the PMI moiety, in red) towards the molecular co-catalyst Mo3S4, and 

behaves as electron acceptor towards NiO. The hydrophobic hexyl groups (in 

blue) exert a blocking effect against the direct discharge of H
+ 

onto bare NiO 

cathode. Adapted from ref. 282. 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 9. Mechanisms of photoactivated CO2 reduction on a p-type semiconductor electrode: (top left) 

heterogeneous photoelectrocatalysis occurring directly at the semiconductor electrode; (top right) 

homogeneous catalysis mediated by a molecular catalyst in the electrolyte; (bottom left) heterogeneous 

photoelectrocatalysis directly on a metal-decorated semiconductor electrode; (bottom right) heterogeneous 

catalysis mediated by a molecular catalyst anchored on the semiconductor electrode. In all four examples 

photoexcitation occurs at the semiconducting cathode. EVB, ECB and EF indicate the upper edge of the 

semiconductor valence band (VB), the lower edge of the semiconductor conduction band (CB), and the Fermi 

level of the p-type semiconductor, respectively. The illuminated electrode is reverse biased in these four 

examples. Adapted from ref. 284 



Several requirements of thermodynamic as well as kinetics character must be fulfilled in order to 

realize an efficient process of photoconversion into the desired product. The latter can be the 

electrical power as in case of the p-DSCs and t-DSCs (Figures 6 and 7), and fuels/chemicals in case 

of the photoelectrolytic cells based on the working principles schematized in Figures 8 and 9. The 

most crucial aspect generally limiting the performance of radiation conversion devices is the one 

related to the effectiveness of charge separation. This is because the separation of charge, once 

effectuated, can evolve either (a) to the displacement of the charges towards the sites/reactants for 

the realization of the desired redox transformations (reductions in the present context), or (b) lead to 

the occurrence of unwanted charge recombination/trapping phenomena depending on the relative 

rates of processes (a) and (b), and the chemical-physical features of the various interfaces on which 

the events of charge separation take place
[316-318]

. For this reason is fundamental to envisage 

photoconversion devices with rapid mechanisms of photogenerated charge displacement within the 

semiconductor
[319]

. A relatively recent example of that has been the invention of the DSC by 

Grätzel
[2]

. The latter represents a photoconversion device in which the electrons photoinjected at a 

sensitized photoanode of TiO2 in the rutile form
[320]

 are swiftly drifted to the metallic cathode for 

the occurrence of a fast interfacial et from the cathode to the anode-generated oxidized form of a 

redox couple. Fundamentally, this successful result is based on very fast charge transport within the 

photoactive semiconducting electrode. This would prevent recombination between the photocharge 

generated at the surface of the light-absorbing semiconducting electrode and the redox species in 

the electrolyte initially oxidized/reduced by the photoinjected charge
[321]

. The most recent 

advancements in the design and realization of PECs of p-type have been achieved when the 

photoelectroactive p-type semiconductors had nanostructured features (Figure 10)
[250, 267, 322-328]

. 

This is motivated by the fact that a nanostructured surface increases enormously the effective area 

of contact for the interfaces created by the nanostructured semiconducting material with respect to 

the same system possessing a compact morphology. This difference improves the kinetics of those 

electrochemical processes occurring at an extended interface in favour to the nanostructured 

version
[329]

.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another important motive of interest in adopting nanostructured semiconductor electrodes resides 

in the possibility of modifying the optical properties of the pristine system through sensitization 

with very large amounts of dye-sensitizers anchored per unit surface
[330, 331]

. These colouring 

additives sometime represent the sole actual light harvesting species in case the semiconductor has 

a wide bandgap with respect to the energy of the luminous radiation
[332]

. On the other hand, the 

main concern that might arise by the utilization of nanostructured semiconductors regards the 

delineation of an opportune pattern of energy bands (or a set of discrete energy levels), which still 

allows the electrical connection through the nanostructured semiconductor
[333, 334]

. In fact, a 

nanostructured semiconductor represents a system characterized by not having an internal electric 

field because of the inexistence of a charge depletion layer
[235-237]

. In this type of semiconductors 

the typically discontinuous pattern of frontier energy levels is also associated to electronic states 

delocalized disorderly at a variable extent
[238]

. Consequently, the latter feature imposes a charge 

transport mechanism of variable range hopping between localized states
[239-342]

, through which the 

displacement of charge is originated by diffusion
[343-347]

.   

 

Figure 10. Image of the cross section of a nanostructured cathode made of 

nickel oxide. The picture has been obtained with the dual beam focused ion 

beam–scanning electron microscope (FIB-SEM). Adapted from ref. 329. 



In this review we will report the most recent developments and progresses achieved with PECs 

having photoactive cathodes (vide supra). Despite the fast advancement of the technology of 

perovskite solar cells[348-382], in the present contribution this type of device will be not reviewed 

since the photocurrent generated in perovskite based photoconversion devices is not associated to 

the primary event of a photostimulated redox reactions but is rather a consequence of a light-driven 

process of charge separation at a p-i-n junction. As a such, it does not introduce any redox states 

variations in the conducting materials during ordinary operative conditions of perovskite systems 

[383-385]. 

 

 

 

Devices for the conversion of the electromagnetic radiation into electrical power with 

photoelectroactive p-type semiconductors: analysis of performances recently reported in 

the literature 

 

DSCs of p-type and t-type 

One of the first studies on sensitized p-type semiconductors with nanostructured features for DSCs 

of p-type was reported in 2000
[267]

. In this seminal work nanoporous nickel oxide (NiO) prepared 

via sol-gel was employed as cathode while erythrosine B was the dye-sensitizer. This prototypical 

p-DSC displayed a photovoltage of about 80 mV, and a photocurrent density of ca. 0.2 mA cm
-2

 the 

photocurrent being originated by associated the photoinjection of mobile holes in the VB of NiO 

after photoexcitation of the chemisorbed colorant (Figure 6). Despite the low overall efficiency (less 

than 0.1 %), this results represented in principle a quite remarkable step forward especially in 

comparison with the modest performance of one of the first p-DSCs that utilized a semiconducting 

photocathode with compact morphology
[332]

. Anyhow, when compared to the analogous n-type 

counterparts, p-DSCs show their relative limits especially in terms of overall efficiencies since the 

most performing p-DSCs reach at most 1-2 % of overall conversion efficiency
[386, 387]

, whereas there 

is a constant upgrade of efficiency records with n-DSCs that reach values in the broad range of 10-

15 %
[388, 4, 389, 390]

. What mainly motivates the research on p-type photoelectrochemical devices is 

the realization of t-DSCs (Figure 7)
[267-271]

, which possess both electrodes with photoactive features 

due to their sensitization with colorants having complementary absorption properties
[237]

.  

 

 



 

 

 

Such a tandem configuration would allow the achievement of larger open circuit photovoltages with 

respect to the corresponding DSCs having single photoactive electrodes (Figure 11), but the gain in 

photopotential is obtained at expenses of current density and fill factor, that are both controlled by 

the less performing photoactive electrode (typically the nanoporous photocathode)
[237, 267-271]

. The 

expected improvement of the overall photoelectrochemical performance in t-DSC
[391]

 in comparison 

to the DSC configurations with single photoactive electrode is possible only when n- and p-type 

devices generate separately photocurrents and reach FFs with comparable values the sensitizing 

agents of cathode and anode being complementary in terms of optical absorption (Figure 12). The 

present work updates the most recent achievements in the fields, which were not covered by the 

works of Daeneke et al. on the general limits of p-DSCs [241], and of Dini et al.
[239, 240]

 about the 

influence of photocathode nature and preparation method on the relative photoelectrochemical 

properties in the corresponding p-DSCs. Table 5 presents the most recent achievements obtained in 

the best performing p-DSCs when the redox shuttle was the couple I3
-
/I

-
. The comparison of the p-

DSCs regards PECs differing for the structure of the dye-sensitizer
[243, 250, 270, 271, 327, 329, 392-395] 

(Figure 12), and the nature of the nanostructured p-type photocathode
[396-400]

.  
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Figure 111. JV curves of a p-DSC with 

NiO cathode, of an n-DSC with TiO2 

anode and the corresponding t-DSC 

obtained upon combination of the p-

DSC photocathode with the n-DSC 

photoanode. Anode and cathode 

sensitizers were N-719 and Fast Green, 

respectively. Redox shuttle: I3
-
/I

-
. The 

illumination of the t-DSC with sun 

simulator having AM 1.5 was first 

directed to the side of the photoanode. 

Adapted from ref. 237. 

 



 

 

 

 

As recognized in precedence
[241]

, the main drawback of a p-DSC is the attainment of relatively low 

fill factors, which generally never exceed 40 % in the most efficient configurations (i.e. with  > 

0.14, Table 5)
[243, 250, 270, 271, 327, 394]

 when the redox couple I3
-
/I

-
 is present. Upon adoption of a redox 

mediator other than the one based on iodide, the p-DSCs display performances with considerably 

ameliorated characteristics (Table 6)
[387, 401-411]

. These facts would indicate that the main routes of 

photocathode optimization and refinement of dye-sensitizer design (Figure 13) must be necessarily 

accompanied by a systematic research on the selection and eventually the definition of new redox 

mediators in order to improve the performance of p-DSCs.  

 

 

 

 

 

 

 

 

Figure 12. Structures of the most efficient dye-sensitizers insofar utilized in 

p-DSCs. 



 

Cathode Sensitizer  / % VOC / mV jSC / mA cm
-

2
 

FF/% Ref. 

NiO-RDS  P1 0.121 125 -2.84 33.7 [329] 

NiO-CS  P1 0.110 128 -2.42 35.2 [329] 

NiO sol-gel  P1 0.150 84 -5.48 34.0 [250] 

NiO sol-gel GS1 0.200 106 -5.87 31.0 [271] 

NiO sol-gel CAD1 0.250 101 -8.21 31.0 [271] 

NiO sol-gel K1 0.090 96 -2.91 32.0 [393] 

NiO sol-gel K2 0.070 93 -1.96 39.0 [393] 

NiO sol-gel 1 0.060 97 -1.60 38.0 [243] 

NiO sol-gel 2 0.140 109 -3.70 35.0 [243] 

NiO sol-gel 3 0.050 95 -1.58 35.0 [243] 

NiO sol-gel 3 0.080 79 -3.15 31.0 [392] 

NiO
1
 PMI-6TTPA 0.460 208 -6.36 34.0 [328] 

NiO
2
  PMI-6TTPA 0.410 218 -5.35 35.0 [270] 

NiO
3
  PMI-6TTPA 0.400 292 -3.30 41.0 [394] 

CuAlO2  PMI-6TTPA 0.040 333 -0.30 42.0 [396] 

NiO sol-gel  PMI-NDI 0.073 120 -1.76 34.5 [395] 

CuGaO2  PMI-NDI 0.023 187 -0.29 41.0 [397] 

CuCrO2  C343 0.014 145 -0.24 39.8 [398] 

KxZnO  C343 0.012 82 -0.41 35.8 [231] 
RDS: rapid discharge sintering; CS: conventional sintering; 1: microballs; 2: nanoparticles; 3: nanorods 

 

 

Table 5. p-DSC parameters for devices having different nanostructured photocathodes and dye-

sensitizers (Figure 8). Redox shuttle: I3
-
/I

-
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Cathode Sensitizer Redox couple  / % VOC / mV jSC / mA cm
-2

 FF/% Ref. 

NiO-SP  PMI-6TTPA [Fe(acac)3]
0/1-

 2.51 645 -7.65 51.0 [387] 

NiO-SP PMI-6TTPA [Co(en)3]
3+/2+

 1.20 724 -4.11 40.0 [387] 

NiO-SP PMI-6TTPA I3
-
/I

-
 0.60 243 -6.26 39.0 [387] 

NiO sol-gel PMI-6TTPA thiolate/disulfide 0.51 285 -5.30 34.0 [401] 

NiO-SP
1
 PMI-6TTPA [Co(en)3]

3+/2+
 1.30 709 -4.44 42.0 [386] 

NiO-SP
 2
 PMI-6TTPA [Co(en)3]

3+/2+
 1.30 660 -4.35 46.0 [386] 

CuCrO2
3 

P1 thiolate/disulfide 0.17 309 -1.43 38.0 [402] 

CuCrO2
4
 P1 thiolate/disulfide 0.17 240 -1.89 36.0 [402] 

CuCrO2
5
 P1 thiolate/disulfide 0.22 293 -1.71 43.0 [402] 

CuCrO2
6
 P1 thiolate/disulfide 0.23 304 -1.73 44.0 [402] 

NiO-SP P1 [Co(dtbpy)3]
3+/2+

 0.099 280 -1.18 30.0 [403] 

NiO-SP E1 [Co(dtbpy)3]
3+/2+

 0.130 320 -0.93 44.0 [403] 

NiO-SP E2 [Co(dtbpy)3]
3+/2+

 0.102 320 -0.78 41.0 [403] 

NiO tmpl
7
 T3 I3

-
/I

-
 0.180 144 -4.06 30.8 [404] 

NiO tmpl T3H I3
-
/I

-
 0.226 133 -5.56 30.5 [404] 

NiO tmpl T4 I3
-
/I

-
 0.207 152 -3.94 34.5 [404] 

NiO tmpl T4H I3
-
/I

-
 0.317 152 -6.73 31.0 [404] 

NiO np
8
 PMI-6TTPA I3

-
/I

-
 0.45 226 -5.40 36.0 [405] 

NiO np PMI-6TTPA [Co(en)3]
3+/2+

 1.00 640 -3.72 42.0 [405] 

CuCrO2 PMI-6TTPA I3
-
/I

-
 0.23 268 -1.98 44.0 [405] 

CuCrO2 PMI-6TTPA [Co(en)3]
3+/2+

 0.48 734 -1.23 53.0 [405] 

NiO db
9
 CW1 I3

-
/I

-
 0.114 99 -2.66 35.0 [406] 

NiO db CW2 I3
-
/I

-
 0.160 93 -4.05 34.0 [406] 

NiO db P1 I3
-
/I

-
 0.143 93 -4.67 33.0 [406] 

NiO BH2 I3
-
/I

-
 0.13 97 -4.3 31.0 [407] 

NiO BH4 I3
-
/I

-
 0.28 128 -7.4 30.0 [407] 

NiO BH6 I3
-
/I

-
 0.13 95 -4.4 31.0 [407] 

NiO db QT1 I3
-
/I

-
 0.33 120 -8.2 34.0 [408] 

NiO db QT1 Co
3+/2+

 0.50 226 -6.5 34.0 [408] 

CuCrO2 P1 thiolate/disulfide 0.17 309 -1.43 38.0 [409] 

CuCrO2/Au  P1 thiolate/disulfide 0.31 305 -2.68 38.0 [409] 

NiO cl+mp
10

 P1 PCBM - 620 -0.05 - [410] 

NiO-SP DPP-1 [Co(dtbbpy)3]
3+/2+

 0.205 330 -2.06 30.0 [411] 

NiO-SP DPP-2 [Co(dtbbpy)3]
3+/2+

 0.21 370 -1.95 29.0 [411] 

NiO-SP DPP-NDI [Co(dtbbpy)3]
3+/2+

 0.13 292 -1.56 29.0 [411] 
SP: screen printed; 1: 0.1 M LiTFSI; 2: 0.5 M LiTFSI; 3: 1.8 m thick; 4: 3 m thick; 5: PEDOT counter electrode; 6: CoS counter 
electrode; 7: tmpl = template [93]; 8: np = nanoparticles; 9: db = doctor blade; 10: cl+mp = mesoporous layer over a compact layer 

 

Table 6. Parameters of the p-DSC differing for the nature of the nanostructured 

photocathodes and dye-sensitizers (Figure 9). The redox shuttles here considered are 

alternatives to the reference couple I3
-
/I

-
 here considered for comparative purposes. 

 

 



        

 

 
 

 

 

 

 

    
 

 

 

 

 

 

Figure 13. Structures of newly synthesized dye-sensitizers for NiO based p-DSCs with Co
2+/3+ 

and 

I3
-
/I

-  
redox shuttles. 

 



Closely related to the progress of p-DSC is the one of t-DSC with both electrodes 

nanostructured and opportunely sensitized
[237, 267-271, 401, 412]

. In terms of performance, the t-

DSC represents a device still in its infancy, which strongly needs of a further stage of 

evolution for reaching and eventually surpassing the performances of the corresponding n-

DSCs in accordance to the predictions of thermodynamics
[391]

. Table 7 presents the list of the 

parameters characterizing the performance of the t-DSCs reported so far.    

 

 

a: cell utilizing thiolate/disulfide redox mediator; b: cell employing Co3+/2+ as redox shuttle; c: MC = 3-carboxymethyl-5-[2-(3-

octadecyl-2-benzothiazolinyldene) ethylidene]-2-thioxo-4-thiazolidine; d: N3 = cis-di(thiocyanato)bis(4,4’-dicarboxy-2-2’-

bipyridine) ruthenium(II); e: ERY B = erythrosine b 

 

Table 7. Parameters of the t-DSC differing for the combination of the nanostructured electrodes and 

corresponding dye-sensitizers. The redox shuttle is represented by the couple I3
-
/I

-
 if not otherwise 

indicated. The photoanodic material is mesoporous TiO2. The t-DSC is illuminated from the side of 

the n-electrode (TiO2 photoanode). 

 

 

Conclusions  

The use of n-type semiconductors as photoanodes and  p‐type semiconductors as photoactive 

cathodes of p‐ and t‐DSCs has been reviewed. Concerning the n-type semiconductor, a substantial 

performance improvement has been obtained by optimizing the dimensions of the particles that can 

be achieved by tailoring the synthesis conditions. The role of band gap, morphology, composition 

and doping of n-type semiconductors for the development of efficient photoanodes has been 

reported. Several contributions were summarized here with the description of nanostructures (0D, 

1D, 2D, 3D and mesoporous nanostructures) and of the effect of doping of photoanodes materials 

(mostly TiO2 and ZnO) on the performances of DSSCs. The maximum photoconversion efficiency 

(13-15%) has been reported using titania based photoanodes. About photocathodes, we have posed 

our attention towards the most recent developments on p-type semiconductors having 

Cathode p-sensitizer n-sensitizer  / % VOC / mV jSC / mA cm
-2

 FF / % Ref. 

NiO PMI-6T-TPA SQ2 1.19 924 1.9 67 [401] 

NiO
a
 PMI-6T-TPA SQ2 1.33 814 2.5 65 [401] 

NiO CAD 3 D35 1.7 613 5.15 54 [271] 

NiO GS 1 D35 1.3 638 4.54 43 [271] 

NiO P1 D35 1.1 732 3.71 38 [271] 

NiO 3 N719 1.91 1079 2.40 74 [270] 

NiO
b
 PMI-NDI N719 0.55 910 0.97 62 [270] 

Se  N719 0.98 940 2.72 39 [412] 

NiO MC
c
 N3

d
 0.66 918 3.62 19 [268] 

NiO ERY B
 e
 N719 0.39 732 2.15  [267] 



nanostructured features and mesoporous morphology. Such features impart large surface areas and 

allow the anchoring of a large number of dye-sensitizers per unit area with favourable consequences 

on the efficaciousness with which the desired photoactivated electrochemical process occurs. An 

important issue related to the employment of nanostructured semiconducting cathodes is the 

determination of the position of the energy levels for the frontier states directly involved in the 

exchange of photocarriers with the dye-sensitizer in the excited state. Among nanostructured 

semiconducting cathodes, nickel oxide having non-stoichiometric features is the most important 

representative of p-type photocathodes due to its intrinsic photoelectroactivity. Other examples of 

nanostructured photocathodes have been also mentioned in the present review thus indicating new 

possible directions of research in the materials science of semiconducting electrodes of p-type. Also 

the most important examples of dye-sensitizers for p-type nanostructured electrodes have been 

reviewed. The aspects of electronic conjugation, presence of spacers and substituents with peculiar 

electronic effects, state of surface immobilization have been briefly considered in the analysis of the 

most important structural factors of the dye-sensitizers, which control the process of charge 

photogeneration and injection in the photocathode. An aspect that has not been considered in depth 

is the feasibility of the synthesis and purification methods for purposely designed photo-/electro-

catalytic systems for p-type semiconductors. In terms of short-term goals, the main purpose of the 

development of increasingly efficient p-DSCs is the achievement of efficiencies comparable to 

those of the n-type counterparts in order to produce tandem devices with efficiencies approaching 

the theoretical limit. 
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