2,359 research outputs found

    Semantic labeling of places

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. We believe that such semantic information enables a mobile robot to more efficiently accomplish a variety of tasks such as human-robot interaction, path-planning, or localization. In this paper, we propose an approach to classify places in indoor environments into different categories. Our approach uses AdaBoost to boost simple features extracted from vision and laser range data. Furthermore,we apply a Hidden Markov Model to take spatial dependencies between robot poses into account and to increase the robustness of the classification. Our technique has been implemented and tested on real robots as well as in simulation. Experiments presented in this paper demonstrate that our approach can be utilized to robustly classify places into semantic categories

    DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks

    Full text link
    3D scene understanding is important for robots to interact with the 3D world in a meaningful way. Most previous works on 3D scene understanding focus on recognizing geometrical or semantic properties of the scene independently. In this work, we introduce Data Associated Recurrent Neural Networks (DA-RNNs), a novel framework for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recurrent neural network architecture for semantic labeling on RGB-D videos. The output of the network is integrated with mapping techniques such as KinectFusion in order to inject semantic information into the reconstructed 3D scene. Experiments conducted on a real world dataset and a synthetic dataset with RGB-D videos demonstrate the ability of our method in semantic 3D scene mapping.Comment: Published in RSS 201

    Volume-based Semantic Labeling with Signed Distance Functions

    Full text link
    Research works on the two topics of Semantic Segmentation and SLAM (Simultaneous Localization and Mapping) have been following separate tracks. Here, we link them quite tightly by delineating a category label fusion technique that allows for embedding semantic information into the dense map created by a volume-based SLAM algorithm such as KinectFusion. Accordingly, our approach is the first to provide a semantically labeled dense reconstruction of the environment from a stream of RGB-D images. We validate our proposal using a publicly available semantically annotated RGB-D dataset and a) employing ground truth labels, b) corrupting such annotations with synthetic noise, c) deploying a state of the art semantic segmentation algorithm based on Convolutional Neural Networks.Comment: Submitted to PSIVT201

    Reconstructive Sparse Code Transfer for Contour Detection and Semantic Labeling

    Get PDF
    We frame the task of predicting a semantic labeling as a sparse reconstruction procedure that applies a target-specific learned transfer function to a generic deep sparse code representation of an image. This strategy partitions training into two distinct stages. First, in an unsupervised manner, we learn a set of generic dictionaries optimized for sparse coding of image patches. We train a multilayer representation via recursive sparse dictionary learning on pooled codes output by earlier layers. Second, we encode all training images with the generic dictionaries and learn a transfer function that optimizes reconstruction of patches extracted from annotated ground-truth given the sparse codes of their corresponding image patches. At test time, we encode a novel image using the generic dictionaries and then reconstruct using the transfer function. The output reconstruction is a semantic labeling of the test image. Applying this strategy to the task of contour detection, we demonstrate performance competitive with state-of-the-art systems. Unlike almost all prior work, our approach obviates the need for any form of hand-designed features or filters. To illustrate general applicability, we also show initial results on semantic part labeling of human faces. The effectiveness of our approach opens new avenues for research on deep sparse representations. Our classifiers utilize this representation in a novel manner. Rather than acting on nodes in the deepest layer, they attach to nodes along a slice through multiple layers of the network in order to make predictions about local patches. Our flexible combination of a generatively learned sparse representation with discriminatively trained transfer classifiers extends the notion of sparse reconstruction to encompass arbitrary semantic labeling tasks.Comment: to appear in Asian Conference on Computer Vision (ACCV), 201
    • …
    corecore