314,822 research outputs found
Accuracy of Patient-Specific Organ Dose Estimates Obtained Using an Automated Image Segmentation Algorithm
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was -7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors
The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset
Purpose: To organize a knee MRI segmentation challenge for characterizing the
semantic and clinical efficacy of automatic segmentation methods relevant for
monitoring osteoarthritis progression.
Methods: A dataset partition consisting of 3D knee MRI from 88 subjects at
two timepoints with ground-truth articular (femoral, tibial, patellar)
cartilage and meniscus segmentations was standardized. Challenge submissions
and a majority-vote ensemble were evaluated using Dice score, average symmetric
surface distance, volumetric overlap error, and coefficient of variation on a
hold-out test set. Similarities in network segmentations were evaluated using
pairwise Dice correlations. Articular cartilage thickness was computed per-scan
and longitudinally. Correlation between thickness error and segmentation
metrics was measured using Pearson's coefficient. Two empirical upper bounds
for ensemble performance were computed using combinations of model outputs that
consolidated true positives and true negatives.
Results: Six teams (T1-T6) submitted entries for the challenge. No
significant differences were observed across all segmentation metrics for all
tissues (p=1.0) among the four top-performing networks (T2, T3, T4, T6). Dice
correlations between network pairs were high (>0.85). Per-scan thickness errors
were negligible among T1-T4 (p=0.99) and longitudinal changes showed minimal
bias (<0.03mm). Low correlations (<0.41) were observed between segmentation
metrics and thickness error. The majority-vote ensemble was comparable to top
performing networks (p=1.0). Empirical upper bound performances were similar
for both combinations (p=1.0).
Conclusion: Diverse networks learned to segment the knee similarly where high
segmentation accuracy did not correlate to cartilage thickness accuracy. Voting
ensembles did not outperform individual networks but may help regularize
individual models.Comment: Submitted to Radiology: Artificial Intelligence; Fixed typo
An efficient technique of texture representation in segmentation-based image coding schemes
In segmentation-based image coding techniques the image to be compressed is first segmented. Then, the information is coded describing the shape and the interior of the regions. A new method to encode the texture obtained in segmentation-based coding schemes is presented. The approach combines 2-D linear prediction and stochastic vector quantization. To encode a texture, a linear predictor is computed first. Next, a codebook following the prediction error model is generated and the prediction error is encoded with VQ. In the decoder, the error image is decoded first and then filtered as a whole, using the prediction filter. Hence, correlation between pixels is not lost from one block to another and a good reproduction quality can be achieved.Peer ReviewedPostprint (published version
Order Statistics Based List Decoding Techniques for Linear Binary Block Codes
The order statistics based list decoding techniques for linear binary block
codes of small to medium block length are investigated. The construction of the
list of the test error patterns is considered. The original order statistics
decoding is generalized by assuming segmentation of the most reliable
independent positions of the received bits. The segmentation is shown to
overcome several drawbacks of the original order statistics decoding. The
complexity of the order statistics based decoding is further reduced by
assuming a partial ordering of the received bits in order to avoid the complex
Gauss elimination. The probability of the test error patterns in the decoding
list is derived. The bit error rate performance and the decoding complexity
trade-off of the proposed decoding algorithms is studied by computer
simulations. Numerical examples show that, in some cases, the proposed decoding
schemes are superior to the original order statistics decoding in terms of both
the bit error rate performance as well as the decoding complexity.Comment: 17 pages, 2 tables, 6 figures, submitted to IEEE Transactions on
Information Theor
Cell Segmentation in 3D Confocal Images using Supervoxel Merge-Forests with CNN-based Hypothesis Selection
Automated segmentation approaches are crucial to quantitatively analyze
large-scale 3D microscopy images. Particularly in deep tissue regions,
automatic methods still fail to provide error-free segmentations. To improve
the segmentation quality throughout imaged samples, we present a new
supervoxel-based 3D segmentation approach that outperforms current methods and
reduces the manual correction effort. The algorithm consists of gentle
preprocessing and a conservative super-voxel generation method followed by
supervoxel agglomeration based on local signal properties and a postprocessing
step to fix under-segmentation errors using a Convolutional Neural Network. We
validate the functionality of the algorithm on manually labeled 3D confocal
images of the plant Arabidopis thaliana and compare the results to a
state-of-the-art meristem segmentation algorithm.Comment: 5 pages, 3 figures, 1 tabl
Image Segmentation with Multidimensional Refinement Indicators
We transpose an optimal control technique to the image segmentation problem.
The idea is to consider image segmentation as a parameter estimation problem.
The parameter to estimate is the color of the pixels of the image. We use the
adaptive parameterization technique which builds iteratively an optimal
representation of the parameter into uniform regions that form a partition of
the domain, hence corresponding to a segmentation of the image. We minimize an
error function during the iterations, and the partition of the image into
regions is optimally driven by the gradient of this error. The resulting
segmentation algorithm inherits desirable properties from its optimal control
origin: soundness, robustness, and flexibility
Filter Design and Performance Evaluation for Fingerprint Image Segmentation
Fingerprint recognition plays an important role in many commercial
applications and is used by millions of people every day, e.g. for unlocking
mobile phones. Fingerprint image segmentation is typically the first processing
step of most fingerprint algorithms and it divides an image into foreground,
the region of interest, and background. Two types of error can occur during
this step which both have a negative impact on the recognition performance:
'true' foreground can be labeled as background and features like minutiae can
be lost, or conversely 'true' background can be misclassified as foreground and
spurious features can be introduced. The contribution of this paper is
threefold: firstly, we propose a novel factorized directional bandpass (FDB)
segmentation method for texture extraction based on the directional Hilbert
transform of a Butterworth bandpass (DHBB) filter interwoven with
soft-thresholding. Secondly, we provide a manually marked ground truth
segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a
systematic performance comparison between the FDB method and four of the most
often cited fingerprint segmentation algorithms showing that the FDB
segmentation method clearly outperforms these four widely used methods. The
benchmark and the implementation of the FDB method are made publicly available
Automatically Designing CNN Architectures for Medical Image Segmentation
Deep neural network architectures have traditionally been designed and
explored with human expertise in a long-lasting trial-and-error process. This
process requires huge amount of time, expertise, and resources. To address this
tedious problem, we propose a novel algorithm to optimally find hyperparameters
of a deep network architecture automatically. We specifically focus on
designing neural architectures for medical image segmentation task. Our
proposed method is based on a policy gradient reinforcement learning for which
the reward function is assigned a segmentation evaluation utility (i.e., dice
index). We show the efficacy of the proposed method with its low computational
cost in comparison with the state-of-the-art medical image segmentation
networks. We also present a new architecture design, a densely connected
encoder-decoder CNN, as a strong baseline architecture to apply the proposed
hyperparameter search algorithm. We apply the proposed algorithm to each layer
of the baseline architectures. As an application, we train the proposed system
on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC)
MICCAI 2017. Starting from a baseline segmentation architecture, the resulting
network architecture obtains the state-of-the-art results in accuracy without
performing any trial-and-error based architecture design approaches or close
supervision of the hyperparameters changes.Comment: Accepted to Machine Learning in Medical Imaging (MLMI 2018
- …
