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Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate
patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps
combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates
obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is
sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will
have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algo-
rithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of
the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and
compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the
expert segmentation for regions other than the spinal canal, with the median error for each organ region
below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28%
for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated
segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. © 2016

Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.4.043502]

Keywords: computed tomography; organ dose; segmentation.

Paper 16071PRR received Apr. 28, 2016; accepted for publication Nov. 4, 2016; published online Nov. 29, 2016.

1 Introduction
Radiation dose due to computed tomography (CT) scans is a
growing public health concern.1,2 Several states have mandated
the reporting of CT radiation dose, and these dose-reporting
efforts have had positive effects on protocol standardization.3

However, the dose metrics used in these reports, CT dose
index (CTDI) and dose-length product, represent the dose to
a plastic cylinder and were originally designed for scanner qual-
ity assurance, not for quantifying patient dose.4 For example, a
recent study found more than 100% variation between different
methods of estimating the effective dose of pediatric CT scans
and currently reported dose metrics.5

Numerous approaches have been studied for patient-specific
organ dose estimation.6–21 Although approximate methods
based on CTDI conversion factors or phantom library models
are available, they may not be able to model all the patient
and scan-specific factors that affect organ dose such as tube volt-
age (kV), tube current settings and modulation, beam collima-
tion, beam shaping filters, patient centering, gantry start angle
for helical scans, and patient-specific anatomy.

The current gold standard for accurate organ dose estimation
is to create a three-dimensional (3-D) dose map for an individual
scan by performing Monte Carlo simulations of x-ray transport
through the patient.6–8,19 Inputs to the program are the (previ-
ously) reconstructed images, where Hounsfield units have
been converted to physiologic materials such as tissue and

bone, and a CT scanner model describing the incident x-ray flu-
ence profile. Manual/semiautomated CT image segmentation is
then performed to delineate organ boundaries thus allowing for
computation of individual organ doses from the dose maps. The
manual input required for segmentation is a potential issue for
routine organ dose estimation and is the subject of this study.

The overall goal of this work is to develop a rapid, accurate,
and fully automated software tool to estimate patient-specific
organ doses from CT scans. The tool will (1) rapidly compute
spatially dependent dose distributions (dose maps) and (2) auto-
matically segment the CT images to determine specific organ
boundaries thus allowing for computation of individual organ
doses from the dose maps. In a separate study, we investigated
the use of a deterministic Boltzmann transport equation (BTE)
solver (Acuros CT-Dose, Varian Medical Systems. Acuros CT-
Dose is currently a research tool and not available for commer-
cial use) to rapidly compute the dose maps.22 Alternatively,
many groups have investigated graphics processing unit-
based Monte Carlo simulation for accelerated computation of
dose maps.23,24 This study investigates the feasibility of the sec-
ond step of the process—automated segmentation—as required
to compute individual organ doses.

Automated CT segmentation algorithms are commercially
available and are often used to assist radiation therapy treatment
planning. Accurate delineation of organ boundaries is important
for the task of treatment planning; therefore, manual editing is
generally required to adjust the output organ contours after auto-
matic segmentation. For the task of CT organ dose estimation,
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the relevant outputs are organ dose metrics rather than the organ
contours. We hypothesize that accurate CT organ dose estima-
tion may be possible despite some segmentation errors, as small
errors at the organ boundary may have a minimal effect since
dose (mGy) is the deposited energy normalized by the mass.
The purpose of this study is to quantify the performance of a
commercial segmentation algorithm applied to automated
organ dose estimation. Methods for robustly estimating organ
dose from the segmentation outputs are also investigated.

2 Methods and Materials
The organ dose estimation method investigated in this work is
illustrated in Fig. 1. This study quantified the effects of the auto-
matic segmentation algorithm on organ dose estimates, with
dose maps generated through gold standard Monte Carlo
approaches. Parallel efforts are under way to validate the
BTE solver dose estimates.22

2.1 Autosegmentation Algorithm

The autosegmentation algorithm investigated in this work
(Smart Segmentation Knowledge Based Contouring® v15.0,
Varian Medical Systems, Palo Alto, California, referred to as
“Smart Segmentation” in this work) uses a combination of fea-
ture-based and atlas-based methods.25 Some regions, such as the
bones, lungs, and eyes, are automatically segmented based on
image features. Remaining organs are segmented using an atlas-
based approach.26 The atlas contains CT image sets classified by
body region (e.g., head/neck, chest, and pelvis) where the
organs-of-interest (e.g., brain, parotid glands, breasts, lungs,
heart, bladder, and rectum) have been manually segmented.
For each new dataset to be segmented, the commercial imple-
mentation suggests an expert case based on patient age, gender,
weight, exam type, and a similarity score. The similarity score
for head and neck cases is calculated based on three features and
is intended to be a quickly computed, approximate metric. First,
a point match is performed using automatically detected land-
marks, and the residual error of this point match is evaluated.
The second feature uses the difference of the body outlines
of the patient and expert cases after a rigid registration based
on the point match is applied. Last, the ratio of the total low-
density volume to the total body volume is compared. These
features take into account the registration algorithm, and the
similarity score attempts to predict the similarity after the
deformable registration is performed.

The expert atlas case is deformably registered to the
current case. The registration algorithm uses a variation of

the Demons algorithm with a multiresolution pyramid to
increase convergence speed and improve robustness to image
distortions.26 The resulting deformation field is used to propa-
gate the expert case organ boundaries onto the current case,
thereby defining the organ boundaries for the current case.
The algorithm is clinically used for radiation therapy treatment
planning, which requires a high degree of accuracy in identify-
ing the organ boundaries. Therefore, for treatment planning, the
contours are typically revised based on the judgment of a human
expert. In a previous head and neck study, the registration algo-
rithm was demonstrated to deform the expert case to be within
2 mm of the reference (manually segmented) locations for 99%
of the voxels.26 In a breast study, the algorithm produced 94%
volume overlap with the reference segmentations.27 The com-
mercial segmentation algorithm was used without modification
in this study and without manual adjustment of the contours, as
we hypothesize that organ dose can be estimated robustly
despite small errors in the segmented contours.

2.2 Validation CT Datasets

Twenty previously acquired head-neck CT datasets included in
the Smart Segmentation software were used for this study, with a
scan range from the top of the head down to part of the chest,
including the top of the lungs. The CT scans were acquired at
120 kV with varying acquisition parameters and on different
scanners. The slice thicknesses were 5-mm (7 scans), 2.5-mm
(2 scans), and 1.25-mm (11 scans). The datasets represent a
range of ages from 49 to 82 and classified as “normal” BMI.
All datasets contained pathology with right (10 datasets), left
(3 datasets), and bilateral (7 datasets) tumors.

2.3 Monte Carlo Dose Map Generation

The voxels in the CT datasets were first automatically classified
as being air, lung, adipose, water, soft tissue, muscle, or bone
and assigned densities based on CT number. The thresholds and
density ranges were based on previously published values.28 The
tissue maps were inputted to a Monte Carlo simulation tool
(GEANT429) for dose estimation as Monte Carlo methods are
considered the gold standard for dose estimation. The simula-
tions modeled a clinical CT scanner with 8-cm detector thick-
ness, 120-kV tube voltage, a helical pitch of 1, and 400
projection views per rotation. The scan range was adjusted
for each phantom to ensure complete coverage of the phantom.
The simulations modeled 5 × 106 photons per projection view,
which was empirically determined to provide voxel dose map

Fig. 1 Flowchart of organ dose estimation method investigated in this work. The CT image set is auto-
matically segmented using a commercial algorithm. The contours are then applied to the dose map,
which in this work was generated through Monte Carlo simulations after assigning materials to the voxels
based on CT number. The organ dose for each region was estimated as the mean dose within the seg-
mented organ contours.
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estimates with less than 1% standard deviation. The simulations
output a dose map at the same voxel sampling as the original
CT datasets, representing the radiation dose deposited in
each voxel.

2.4 Expert and Automated Segmentation

Expertly segmented contours for each of the 20 CT cases were
available from the Smart Segmentation atlas library. The expert
contours were created and reviewed by a team of staff radiation
oncologists at an academic hospital. The following nine regions
were common to all cases used in this study: bone, brain, eyes
(left and right), lungs (left and right), parotid glands (left and
right), and spinal canal. While these regions were originally seg-
mented for treatment planning, they also provide a useful test
case for CT organ dose estimation. The atlas similarity score
calculated by the commercial software was noted for all pairs
of cases.

A leave-one-out validation study was performed, where
every case was automatically segmented with each of the
remaining cases used as the expert atlas, resulting in 19 auto-
mated segmentations for each of the 20 datasets. This provides
a conservative estimate of algorithm performance, as all cases
were used as an atlas, regardless of similarity to the current
case. A second study restricted the atlases to cases with 1.25-
mm slice thickness. The third study used only the best matched
atlas (highest similarity score) for each of the 20 cases.

The 3-D Dice coefficients30 between the automated and
expert segmentations were calculated to evaluate the similarity
between the expert and algorithm segmented regions.

2.5 Organ Dose Estimation

Each contoured region output by the segmentation algorithm
was further constrained by the CT number tissue segmentation,
so that a voxel was only included in the organ region if its CT
number was within the range of the expected tissue type. The
mean dose was calculated in each segmented region by averag-
ing the voxelized dose map estimates within the segmented
regions. The mean organ dose calculated in the expert seg-
mented contours served as the ground truth for each case,
with the expert segmentations also constrained by the CT num-
ber tissue segmentation. The percent error in organ dose was
calculated relative to the ground truth values as

EQ-TARGET;temp:intralink-;sec2.5;63;102%Error ¼ 100 ·
ðDosealgorithm − DoseexpertÞ

Doseexpert
:

The potential of a simple multi-atlas segmentation approach
to reduce the error and variability of organ dose estimates was
also investigated. The multiatlas mean organ dose estimates
were calculated as the average of the dose values obtained
from each atlas, with the number of atlases varied between
two and nine. This multiatlas approach is mathematically equiv-
alent to averaging the binary masks output by the segmentation
algorithm for each expert case. The mean organ dose is then
calculated as a weighted average, with the pixels in the averaged
organ mask providing the weights, as illustrated in Fig. 2.

3 Results
Figure 3 plots the distribution of the error in mean organ dose
aggregated across all patient cases segmented using every other
case as the atlas. The bone, eye, and lung regions were seg-
mented by the algorithm based on features, while the remaining
organs were segmented using the atlas registration. Figure 4
plots the distribution of mean organ dose error when the expert
atlas cases were restricted to those with slice thickness of
1.25 mm. When comparing these results of Figs. 3 and 4, it
can be seen that using a thin slice atlas reduced the range of
dose errors across cases, while the median values remained rel-
atively constant when using thinner slices. For example, the left
parotid gland had a 0.2% median percent organ dose error when
using atlases at all slice thicknesses, compared with a median
error of −0.6% when using only the thin slice atlases.

Figure 5 plots the percent error in mean organ dose versus the
Dice coefficient for each case in the leave-one-out validation
study. A Dice coefficient of one represents complete agreement
between the expert and algorithm segmented regions, while a
Dice coefficient of zero signifies no overlap between the seg-
mented regions. The results demonstrate high-segmentation
accuracy (high Dice coefficients) for the bone, brain, and
lung regions. The parotid gland regions demonstrated a wide
range of segmentation accuracy. The spinal canal demonstrated
the highest range of mean organ dose error, with relatively high-
segmentation accuracy (Dice coefficient > 0.6) for most cases.
The Pearson correlation coefficient between absolute organ dose
error and Dice coefficient was −0.73 (bone), −0.43 (brain),
−0.48 (right eye), −0.52 (left eye), −0.99 (left lung), −0.65
(right lung), −0.34 (parotid left), −0.46 (parotid right), and
−0.23 (spinal canal). The relationship of decreasing organ
dose error with increasing Dice coefficient was statistically sig-
nificant for all organs (p < 0.05), although the parotid gland and
spinal canal showed the weakest correlation, as illustrated in the
example cases in Figs. 7 and 8. Figure 6 plots the percent error
versus Dice coefficient for cases where the atlas expert case was

Fig. 2 (a) The binary mask representing the spinal canal region for one patient as segmented using one
atlas case. The overlaid contour represents the expertly segmented spinal canal for this case. (b) The
binary mask obtained by segmenting the spinal canal using a different atlas. (c) The average of masks
obtained from 10 different atlas cases. The values in the averaged mask provide weights for estimating
the mean organ dose.
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restricted to 1.25-mm slice thickness. Comparing Figs. 5 and 6
demonstrates that using a thinner slice atlas reduced the segmen-
tation error, most noticeably in the parotid gland.

Two interesting scenarios are evident in Fig. 5 plot of organ
dose error versus segmentation accuracy. In the data point
labeled A, both the Dice coefficient and parotid gland dose
error were low, demonstrating low organ dose error (<1%)
despite high-segmentation error (Dice coefficient ¼ 0.04).

Figure 7 further investigates this scenario, presenting the expert
segmentation of the patient and atlas cases, as well as the seg-
mented contour output by the algorithm. The expert and algo-
rithm contours are also displayed on the dose map. Figure 7
demonstrates no overlap between the expert and algorithm con-
tours for this slice. However, because the dose map is similar
within both segmented regions, the parotid gland dose is esti-
mated with high accuracy.

Fig. 4 Percent error in mean dose for regions segmented using the automated single-atlas algorithm,
using only atlas cases with 1.25-mm slice thickness. The results are aggregated across 20 patient cases.

Fig. 5 Organ dose error plotted against the Dice coefficient for each organ region. Each point represents
the results from one patient case segmented using one atlas case. Labeled points A and B are discussed
in more detail in Figs. 7 and 8, respectively.

Fig. 3 Percent error in mean dose for regions segmented using the automated single-atlas algorithm.
The results are aggregated across 20 cases, with each case segmented using every other case as an
atlas.
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The data point labeled B in Fig. 5 presents the opposite sce-
nario, where the error in the spinal canal dose was high (18%),
despite the high-segmentation accuracy (Dice coefficient

¼ 0.83). Figure 8 presents the expert and algorithm segmented
contours for this case as well as the dose map. The depicted

slice is in the neck region, where there is little soft tissue to shield
the spinal canal, causing variation in the dosemapwithin the spinal
canal region. Also, this lack of shielding in the neck region causes
these slices to have the highest overall spinal canal dose; therefore,
dose errors in the neck region dominate the overall spinal canal

Fig. 6 Organ dose error plotted against the Dice coefficient for each organ region, where the atlas cases
were restricted to those with 1.25-mm slice thickness. Each point represents the results from one patient
case segmented using one atlas case.

Fig. 7 Example of parotid gland result with <1% dose error despite segmentation errors (labeled as data
point A in Fig. 5). (a) The green contour is the expert segmentation of the parotid gland in the patient case.
(b) The red contour is the expert segmentation of the parotid gland in the atlas case. Notice that the atlas
case is reconstructed at a different voxel size than the expert case, which is accounted for by the auto-
mated segmentation algorithm. (c) The red contour is the parotid gland segmentation output by the auto-
mated algorithm after mapping the atlas contour to the current case. (d) The expert and algorithm
contours overlaid on the dose map.

Fig. 8 Example of spinal canal result with 18% dose error despite high-segmentation accuracy (labeled
as data point B in Fig. 5). (a) The green contour is the expert segmentation of the spinal canal in the
patient case. (b) The red contour is the expert segmentation of the spinal canal in the atlas case. Notice
that the atlas case is reconstructed at a different voxel size than the expert case, which is accounted for
by the automated segmentation algorithm. (c) The red contour is the spinal canal segmentation output by
the automated algorithm after mapping the atlas contour to the current case. (d) The expert and algorithm
contours overlaid on the spinal canal region of the dose map.
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dose error. These results demonstrate substantial error in the spinal
canal dose despite the good agreement between expert and algo-
rithm segmentations.

In the leave-one-out validation study, each case was seg-
mented with every other case as the atlas, regardless of the sim-
ilarity score between the two cases. The study also investigated
the error in mean organ dose obtained when using the atlas case

with the highest similarity score. The results are presented for
the parotid gland and spinal canal, as these two regions demon-
strated the highest organ dose error in Figs. 3 and 4. Figure 9
plots the maximum, minimum, and average absolute mean
parotid gland and spinal canal dose errors for each of the 20
patient cases, with the atlas restricted to those with 1.25-mm
slice thickness. The error obtained when using the atlas case
with the highest similarity score is also plotted. These plots dem-
onstrate, for each patient, the best and worst case organ dose
accuracy that would be obtained from the atlas set, the error
obtained, on average, by selecting a random atlas, and also
the error obtained when using the best matched atlas. The results
demonstrate that using the atlas with the highest similarity score
generally performed similarly to the average error and prevented
the maximum error in all but one case.

Figures 10 and 11 present the results of the investigated mul-
tiatlas method, where the organ dose was estimated as the aver-
age of dose values obtained from multiple atlases. The atlases
were restricted to those with 1.25-mm slice thickness. The
results are presented for the spinal canal and parotid gland,
as these organ regions demonstrated the highest organ dose
error. The maximum absolute error in organ dose was found
to decrease as the number of atlas-based segmentations
increased (Fig. 10). As shown in Fig. 10, the mean absolute

Fig. 9 The minimum, maximum, and average absolute percent errors in mean organ dose for each
patient across all atlases with 1.25-mm slice thickness for the (a) parotid gland and (b) spinal canal.
The error obtained using the atlas with the highest similarity score is also plotted.

Fig. 10 The mean and maximum absolute errors in parotid gland and
spinal canal organ dose estimated using the multiatlas approach with
different numbers of atlases.

Fig. 11 Percent error in mean dose for regions segmented using multiatlas dose estimation method,
using nine atlases with 1.25-mm slice thickness. The results are aggregated across 20 patient cases.
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error remained relatively constant as the number of atlases
increased. Figure 11 plots the distribution of organ dose error
obtained by averaging the results from nine atlas cases.
When compared with the single-atlas results in Fig. 4, the results
demonstrate reduction in the maximum organ dose errors across
patients and atlases for the multiatlas estimates compared with
the single-atlas estimates, with similar median organ dose errors
for both approaches.

4 Discussion
This pilot study presents a preliminary evaluation of a commer-
cial automated segmentation algorithm for CT organ dose esti-
mation. The purpose of this study was to establish the baseline
organ dose estimation performance of an existing commercial
algorithm while identifying potential areas for future improve-
ment. The results demonstrated that the mean organ dose was
estimated with less than 5% error for the brain, lung, and
bone regions when compared with gold standard estimates
using expert segmentations. The eye and parotid gland regions
demonstrated median errors below 5%, with maximum errors of
7% for the eye and 17% for the parotid gland. The maximum
error was reduced to 4% for the eye and 8% for the parotid gland
using the multiatlas averaging approach. The spinal canal was
the only investigated region with a bias in the organ dose esti-
mates, with a median error of approximately −7%. In most
cases, the mean spinal canal dose was underestimated when
using the automated segmentation algorithm (Fig. 5). As dem-
onstrated in Fig. 7, the dose within the spinal canal region of the
neck is spatially variable and thus more susceptible to segmen-
tation errors. For all organs, there was a statistically significant
relationship of decreasing organ dose error with increasing seg-
mentation accuracy, although this relationship was weakest for
the spinal canal, with a Pearson correlation coefficient of −0.23.

This study found that using atlas cases with thin slices
(1.25 mm) reduced the maximum dose errors. This study did
not investigate the effects of the in-plane voxel dimensions,
which varied across the atlas cases. The slice thickness results
suggest that high-resolution atlas cases would likely improve
organ dose estimation.

Figure 9 plots the range of errors for each patient case across
the atlas set for the challenging parotid gland and spinal canal
regions. This plot demonstrates how the dose accuracy depends
on selected atlas case. For example, for each patient case, there
was at least one atlas case that resulted in spinal canal dose error
of less than 5%. More robust dose estimation may be possible by
improved identification of the “best match” atlas, where the best
match may vary by organ region, suggesting the need for a
multiatlas approach. This study demonstrated reduction in maxi-
mum error when using a simple multiatlas averaging technique.
However, even with the multiatlas averaging technique, the spi-
nal canal region demonstrated 11%maximum absolute error and
−7% mean error. More robust multiatlas approaches have been
proposed and may be beneficial to further improve dose estima-
tion accuracy.31 Additional studies are needed to compare the
accuracy of the proposed patient-specific organ dose estimation
method with previously proposed methods that are not patient
specific9,10,17,20,21 including commercial software packages that
estimate organ dose to phantom models.20

This pilot study modeled a CTacquisition with 8-cm detector
thickness and a helical pitch of one, as CT scanners are trending
toward larger volume coverage. Different acquisition geometries
and pitch settings may increase the variation of the dose maps

within small organs, causing higher sensitivity to segmentation
errors. This study used expertly segmented contours available
from the Smart Segmentation library. Although the expert con-
tours were created and reviewed by a team of radiation oncol-
ogists, information about inter- and intra observer variability
was unavailable for use in the current study. Future work can
compare the segmentation accuracy and organ dose error of
automatic segmentation with that of the variability seen between
different observers. Another limitation of this study is that the
automated segmentation algorithm was evaluated only using
head/neck cases. Additional evaluation with a larger number
of testing datasets is required for other CT scan regions that
may be more challenging such as the abdomen. The results
of the current study demonstrate that the sensitivity of organ
dose accuracy to segmentation accuracy varies by organ region.
Accurate parotid gland dose estimation was possible despite
high-segmentation error, because the dose map was relatively
uniform in the region around the parotid gland. The variation
of the dose map within the spinal canal in the neck region
led to higher dose error despite high-segmentation accuracy.
Therefore, future work is needed to identify regions that are sen-
sitive to segmentation accuracy, such as the spinal canal, and to
develop more accurate segmentation approaches or robust organ
dose estimation strategies for these regions.

5 Conclusion
The automated segmentation algorithm estimated the mean
organ dose to be within 10% of the expert segmentation for
regions other than the spinal canal, with median error for
each organ region below 2%. In the spinal canal region, the
median error was −7%, with a maximum absolute error of
28% for the single-atlas approach and 11% for the multiatlas
approach. The results demonstrate that the automated segmen-
tation algorithm can provide accurate organ dose estimates
despite some segmentation errors.
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