1,220 research outputs found

    Secrecy outage analysis for Alamouti space-time block coded non-orthogonal multiple access

    Get PDF
    This letter proposed a novel transmission technique for physical layer security by applying the Alamouti Space-Time Block Coded Non-orthogonal Multiple Access (STBC-NOMA) scheme. The secure outage performance under both perfect successive interference cancellation (pSIC) and imperfect successive interference cancellation (ipSIC) are investigated. In particular, novel exact and asymptotic expressions of secrecy outage probability are derived. Numerical and theoretical results are presented to corroborate the derived expressions and to demonstrate the superiority of STBC-NOMA and its ability to enhance the secrecy outage performance compared to conventional NOMA

    Location-Based Beamforming for Rician Wiretap Channels

    Full text link
    We propose a location-based beamforming scheme for wiretap channels, where a source communicates with a legitimate receiver in the presence of an eavesdropper. We assume that the source and the eavesdropper are equipped with multiple antennas, while the legitimate receiver is equipped with a single antenna. We also assume that all channels are in a Rician fading environment, the channel state information from the legitimate receiver is perfectly known at the source, and that the only information on the eavesdropper available at the source is her location. We first describe how the beamforming vector that minimizes the secrecy outage probability of the system is obtained, illustrating its dependence on the eavesdropper's location. We then derive an easy-to-compute expression for the secrecy outage probability when our proposed location-based beamforming is adopted. Finally, we investigate the impact location uncertainty has on the secrecy outage probability, showing how our proposed solution can still allow for secrecy even when the source has limited information on the eavesdropper's location.Comment: 6 pages, 4 figure

    Safeguarding Massive MIMO Aided HetNets Using Physical Layer Security

    Full text link
    This paper exploits the potential of physical layer security in massive multiple-input multiple-output (MIMO) aided two-tier heterogeneous networks (HetNets). We focus on the downlink secure transmission in the presence of multiple eavesdroppers. We first address the impact of massive MIMO on the maximum receive power based user association. We then derive the tractable upper bound expressions for the secrecy outage probability of a HetNets user.We show that the implementation of massive MIMO significantly improves the secrecy performance, which indicates that physical layer security could be a promising solution for safeguarding massive MIMO HetNets. Furthermore, we show that the secrecy outage probability of HetNets user first degrades and then improves with increasing the density of PBSs

    Fundamental properties of on-off transmission scheme for wiretap channels

    Get PDF
    This work reveals some fundamental properties of an on-off transmission (OOT) scheme, in which a transmitter sends signals occasionally as per the capacity of the main channel in order to achieve physical layer security. To this end, we first identify the widely used hybrid secrecy outage probability as a function of the transmission probability and the conditional secrecy outage probability of the OOT scheme. This indicates, for the first time, that the hybrid secrecy outage probability can be achieved by the OOT scheme. We then derive a lower bound on the conditional secrecy outage probability of the OOT scheme in case of transmission, which is solely determined by the average signal-to-noise ratios (SNRs) of the main channel and eavesdropper’s channel. Finally, we re-investigate the OOT scheme within an absolutely completely passive eavesdropping scenario, in which even the average SNR of the eavesdropper’s channel is not required. Specifically, we derive an easy-evaluated expression for the average conditional secrecy outage probability of the OOT scheme by adopting an annulus threat model.ARC Discovery Projects Grant DP150103905

    Optimal Power Allocation for A Massive MIMO Relay Aided Secure Communication

    Full text link
    In this paper, we address the problem of optimal power allocation at the relay in two-hop secure communications under practical conditions. To guarantee secure communication during the long-distance transmission, the massive MIMO (M-MIMO) relaying techniques are explored to significantly enhance wireless security. The focus of this paper is on the analysis and design of optimal power assignment for a decode-and-forward (DF) M-MIMO relay, so as to maximize the secrecy outage capacity and minimize the interception probability, respectively. Our study reveals the condition for a nonnegative the secrecy outage capacity, obtains closed-form expressions for optimal power, and presents the asymptotic characteristics of secrecy performance. Finally, simulation results validate the effectiveness of the proposed schemes
    • …
    corecore