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Abstract—This work reveals some fundamental properties of
an on-off transmission (OOT) scheme, in which a transmitter
sends signals occasionally as per the capacity of the main channel
in order to achieve physical layer security. To this end, we first
identify the widely used hybrid secrecy outage probability as
a function of the transmission probability and the conditional
secrecy outage probability of the OOT scheme. This indicates,
for the first time, that the hybrid secrecy outage probability
can be achieved by the OOT scheme. We then derive a lower
bound on the conditional secrecy outage probability of the OOT
scheme in case of transmission, which is solely determined by
the average signal-to-noise ratios (SNRs) of the main channel
and eavesdropper’s channel. Finally, we re-investigate the OOT
scheme within an absolutely completely passive eavesdropping
scenario, in which even the average SNR of the eavesdropper’s
channel is not required. Specifically, we derive an easy-evaluated
expression for the average conditional secrecy outage probability
of the OOT scheme by adopting an annulus threat model.

I. INTRODUCTION

As wireless services become increasingly ubiquitous, a
growing amount of research effort has been devoted to physical
layer security in wireless networks [1–3]. This is mainly
due to the fact that physical layer security can guarantee
information secrecy regardless of the eavesdropper’s compu-
tational capability and does not require the key distribution
and management of traditional cryptographic techniques. In
pioneering studies [4–6], a wiretap channel was characterized
as the fundamental system model to protect information at
the physical layer in wireless communications. In the wire-
tap channel, an eavesdropper (Eve) attempts to wiretap the
communication between a transmitter (Alice) and an intended
receiver (Bob). It was proved that perfect secrecy can be
achieved when the capacity of the main channel between Alice
and Bob is greater than the capacity of the eavesdropper’s
channel between Alice and Eve and both these two capacities
are known to Alice.

In practical wiretap channels, the capacity of the eavesdrop-
per’s channel is hard to known at Alice since Eve is generally
passive and does not send back its channel state information
(CSI) to Alice. In the scenario without the CSI of the eaves-
dropper’s channel, it is impossible to guarantee perfect secrecy
and the secrecy outage probability, Pr(Cs < Rs), is widely
adopted as the performance metric, where Cs is the secrecy
capacity and Rs is the secrecy rate [7]. As pointed out by [8],
Pr(Cs < Rs) includes the transmission outage probability and
the conditional secrecy outage probability. As such, throughout

this work we refer to Pr(Cs < Rs) as the hybrid secrecy
outage probability. The hybrid secrecy outage probability is
widely used as a key performance metric to evaluate and
design techniques in the context of physical layer security in
the literature. For example, the antenna selection techniques
with and without space time coding schemes were examined
by using Pr(Cs < Rs) as the primary performance metric
[9–11]. In these studies, this hybrid secrecy outage probability
was also adopted as the optimization criterion. In addition, the
benefits of full-duplex transceivers in wiretap channels were
evaluated by using Pr(Cs < Rs) as the performance metric
[12, 13]. However, it has never been clarified which practical
transmission scheme can achieve this hybrid secrecy outage
probability. This leaves an important gap in our understanding
on the wiretap channels and one of the objects of this work
is to close this gap.

One widely adopted assumption in the context of physical
layer security is that the average signal-to-noise ratio (SNR)
of the eavesdropper’s channel is known to Alice (e.g., [9–11,
13]). One reasonable justification of this assumption is that Eve
can be a legitimate user that severed by Alice in the previous
time slots (relatively to the time slots of interest for secure
transmissions) and the average SNR of the eavesdropper’s
channel can be estimated based on the previous CSI. This
justification may be unapplicable to some scenarios, e.g., Eve
is a new user or Eve is moving fast within the network.
In order to release this assumption, an annulus threat model
was proposed in [14], in which Eve’s location is uniformly
distributed within the annulus bounded by two concentric
circles. The authors of [14] examined the performances of
an adaptive transmission scheme and a fixed-rate transmission
scheme within the annulus threat model. Besides these two
schemes, another important transmission scheme in the context
of physical layer security is the on-off transmission (OOT)
scheme, in which Alice sets Rs as a constant and only
transmits signals when the capacity of the main channel is
larger than Rs. The behaviors of this OOT scheme were
not investigated within the annulus threat model and another
purpose of this work is to examine the performance of the
OOT scheme within the annulus threat model.

In this work, we explicitly prove that the hybrid secrecy
outage probability can be achieved by the OOT scheme and
we express the hybrid secrecy outage probability as a function
of the transmission probability and the conditional secrecy
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outage probability of the OOT scheme. We also reveal a
counterintuitive property of the OOT scheme, which is that we
cannot achieve an arbitrary small conditional secrecy outage
probability by varying Rs. Furthermore, we derive an lower
bound on the conditional secrecy outage probability of the
OOT scheme, which is solely determined by the average SNRs
of the main channel and the eavesdropper’s channel. Finally,
we derive the average conditional secrecy outage probability
of the OOT scheme within the annulus threat model, based
on which we examine the behaviors of this scheme in an
completely passive eavesdropping scenario.

II. SYSTEM MODEL

The wiretap channel of interest is illustrated in Fig. 1, where
Eve attempts to intercept the communication between Alice
and an Bob. Focusing on exploring the properties of the OOT
scheme, we assume that Alice, Bob, and Eve are all equipped
with a single antenna in this work. We also assume that
the main channel and the eavesdropper’s channel are subject
to independent quasi-static Rayleigh fading with equal block
length. As we will show later, Alice requires the capacity
of the main channel to apply the OOT scheme. We adopt a
practical assumption that Alice does not own the capacity of
the eavesdropper’s channel. We consider two passive eaves-
dropping scenarios: (i) the average SNR of the eavesdropper’s
channel is available at Alice and (ii) the average SNR of the
eavesdropper’s channel is unavailable at Alice but her location
is uniformly distributed within an annulus.

The received signal at Bob is

yB = hx+ nB , (1)

where h denotes the complex gain of the main channel, x is
the transmit signal, and nB is the Gaussian noise of the main
channel with zero mean and variance σ2

B . Considering the
transmit power constraint and denoting Alice’s total transmit
power as PA, we have E[|x|2] = PA. Based on (1), the
instantaneous SNR at Bob is given by

γB =
|h|2PA

σ2
B

= γB |h|2, (2)

where γB = PA/σ
2
B denotes the average SNR of the main

channel. The cumulative distribution function (cdf) of γB is
given by

FγB
(γB) = 1− e

− γB
γB . (3)

The received signal signal at Eve is given by

yE = gx+ nE , (4)

where g is the eavesdropper’s channel gain and nE is the
Gaussian noise of the eavesdropper’s channel with zero mean
and variance σ2

E . The instantaneous SNR at Eve after is given
by

γE =
|g|2PA

σ2
E

= γE |g|2, (5)

Fig. 1. Illustration of the wiretap channel of interest.

where γE = PA/σ
2
E is the average SNR of the eavesdropper’s

channel. Then, the probability density function (pdf) of γE is
given by [15]

fγE (γE) =
1

γE

e
− γE

γE , (6)

and the cdf of γE is given by

FγE
(γE) = 1− e

− γE
γE . (7)

III. ON-OFF TRANSMISSION SCHEME WITH STATISTICAL
KNOWLEDGE ON THE EAVESDROPPER’S CHANNEL

In this section, we reveal two fundamental properties of the
OOT scheme by assuming the average SNR of the eavesdrop-
per’s channel being available at Alice.

A. Preliminaries

In a wiretap channel, the secrecy capacity, Cs, is defined as

Cs =

{
CB − CE , γB > γE
0 , γB ≤ γE ,

(8)

where CB = log2 (1 + γB) is the capacity of the main channel
and CE = log2 (1 + γE) is the capacity of the eavesdropper’s
channel. According to the definition of Cs, the hybrid secrecy
outage probability is given by

Phso (Rs) = Pr (Cs < Rs) . (9)

In the OOT scheme, Rs is fixed as a constant and Alice only
transmits when CB > Rs. As such, Bob can always decode a
message in case of a transmission, i.e., the reliability constraint
is guaranteed for every transmission. The probability that Alice
transmits a signal (i.e., transmission probability) within the
OOT scheme is expressed as

Ptx(Rs) = Pr(CB > Rs) = Pr(γB > 2Rs − 1). (10)

The conditional secrecy outage probability, which is defined
as the probability that the redundance rate, (CB −Rs), is less
than CE in case of transmission, can be expressed as

Pcso(Rs) = Pr(CB −Rs < CE |Rs < CB)

=
Pr(2Rs − 1 < γB < 2Rs(1 + γE)− 1)

Pr(γB > 2Rs − 1)
.

(11)



B. Transmission Probability and Two Secrecy Outage Proba-
bilities of the On-Off Transmission Scheme

The hybrid secrecy outage probability of a wiretap channel
can be expressed as a function of the transmission probability
and the conditional secrecy outage probability of the OOT
scheme, which is provided in the following theorem.

Theorem 1: The expression of Phso(Rs) as a function of
Ptx(Rs) and Pcso(Rs) is given by

Phso(Rs) = 1− Ptx(Rs) [1− Pcso(Rs)] . (12)

Proof: Following (9), Phso(Rs) can be rewritten as

Phso(Rs) = Pr(Cs < Rs|γB > γE) Pr(γB > γE)

+ Pr(Cs < Rs|γB < γE) Pr(γB < γE).
(13)

Since Cs = 0 for γB < γE and Rs ≥ 0, we have Pr(Cs <
Rs|γB < γE) = 1. Then, following (13) we have

Phso(Rs) = Pr
[
γE<γB<2Rs(1 + γE)− 1

]
+ Pr(γB<γE)

= Pr
[
0 < γB < 2Rs(1 + γE)− 1

]
. (14)

Following (10) and (11), we have

Ptx(Rs) [1− Pcso(Rs)] = Pr
[
2Rs(1 + γE)− 1 < γB

]
.

(15)
Comparing (14) and (15), we obtain

Phso(Rs) = 1− Ptx(Rs) [1− Pcso(Rs)] (16)
= [1− Ptx(Rs)] + Ptx(Rs)Pcso(Rs). (17)

This completes the proof.
We note that Theorem 1 clarifies, for the first time, that

the hybrid secrecy outage probability can be achieved by
the OOT scheme in a wiretap channel and also indicates
that the hybrid secrecy outage probability is a practical and
meaningful performance metric. It can be seen from (17)
that the hybrid secrecy outage probability incorporates the
transmission outage probability, 1 − Ptx(Rs), and the se-
crecy outage probability in case of all possible transmissions,
Ptx(Rs)Pcso(Rs). Based on the proof of Theorem 1, we note
that (12) is independent of the specific statistical information
of the main channel and the eavesdropper’s channel, i.e., (12)
is valid for any pdfs of γB and γE .

C. Lower Bound on the Strict Secrecy Outage Probability of
the On-Off Transmission Scheme

In case of transmission, the conditional secrecy outage
probability of the OOT scheme is larger than a specific value
ϵ, which is solely determined by γB and γE and is derived in
the following theorem.

Theorem 2: The lower bound on the conditional secrecy
outage probability of the OOT scheme is derived as

ϵ =
γE

γB + γE

. (18)

Proof: Following (11), the conditional secrecy outage
probability of the OOT scheme can be rewritten as

Pcso(Rs) =

∫ ∞

0

FγB
(2Rs(1 + γE)− 1)− FγB

(2Rs − 1)

1− FγB (2
Rs − 1)

× fγE
(γE)dγE . (19)

Substituting (3) and (6) into (19), we obtain

Pcso(Rs) = 1− 1

γE

∫ ∞

0

e
−
(

γB+2RsγE
γBγE

)
γE

dγE . (20)

We then solve the integral in (20) by using
∫∞
0

e−µxdx = µ−1,
which results in

Pcso(Rs) =
2RsγE

γB + 2RsγE

(21)

Based on (21) we know that Pcso(Rs) is a monotonically
increasing function of Rs. As such, the minimum value of
Pcso(Rs) is achieved as given in (18) for Rs = 0. This
completes the proof.

We note that Theorem 2 demonstrates that in the OOT
scheme in case of transmission Pcso(Rs) is bounded by ϵ
and we cannot achieve an arbitrary small secrecy outage
probability by varying Rs. It can be seen from (18) that the
lower bound on Pcso(Rs) is solely determined by the average
SNRs of the main channel and the eavesdropper’s channel.
Specifically, ϵ is a monotonically decreasing function of γB

and a monotonically increasing function of γE .

IV. ON-OFF TRANSMISSION SCHEME WITHIN AN
ABSOLUTELY PASSIVE EAVESDROPPING SCENARIO

In this section, we examine the OOT scheme within an
completely passive eavesdropping scenario, in which even the
average SNR of the eavesdropper’s channel is unavailable
at Alice. Specifically, we derive an expression for condi-
tional secrecy outage probability in the completely passive
eavesdropping scenario, where the eavesdropper’s location is
uniformly distributed in an annulus.

A. Preliminaries (Annulus Threat Model)

In the annulus threat model, the annulus is bounded by
two concentric circles, where ρi and ρo are the radii of the
inner circle and the outer circle, respectively, Alice is assumed
to be at the center of the two concentric circles, and the
distance between Alice and Eve is denoted as ρ. Without
other statements, all distances in this work are in meters. As
discussed in [14], ρi and ρo can be known based on the
physical location of Alice and a SNR threshold. Adopting
the path loss model, the average SNR of the eavesdropper’s
channel can be expressed as a function of ρ, which is given
by [15]

γE = c0ρ
−η, (22)

where c0 = γ0/ρ
−η
r , γ0 is the reference average SNR of the

eavesdropper’s channel at the reference distance ρr, and η is
the path loss exponent. In this work, we assume that c0, ρr, and
η are publicly known, which can be estimated through a priori



measurement campaigns in the vicinity of Alice. As proved in
[14], the square of the distance between Alice and Eve, ρ2,
follows a uniform distribution with ρ2i and ρ2o as the lower
bound and upper bound, respectively, i.e., ρ2 ∼ U(ρ2i , ρ

2
o).

B. Average Conditional Outage Probability of the On-Off
Transmission scheme

From Theorem 1 we know that the hybrid secrecy outage
probability of the OOT scheme can be expressed as a function
of its transmission probability and conditional secrecy outage
probability. Given that the transmission probability of the OOT
scheme is not a function of γE , in this subsection we focus
on deriving the average conditional secrecy outage probability
of the OOT scheme within the annulus threat model, which is
provided in the following theorem.

Theorem 3: The average conditional secrecy outage proba-
bility, P cso(Rs), of the OOT scheme within the annulus threat
model is derived as

P cso(Rs) = 1− ρ2o
ρ2o − ρ2i

2F1

(
1,−2

η
; 1− 2

η
;−2Rsc0ρ

−η
o

γB

)
+

ρ2i
ρ2o − ρ2i

2F1

(
1,−2

η
; 1− 2

η
;−2Rsc0ρ

−η
i

γB

)
, (23)

where 2F1(·, ·; ·; ·) denotes the Gauss hypergeometric function,
which is given by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)nz
n

(c)nn!
, (24)

and (·)n for nonnegative integers n is given by

(α)n =

{
1 , n = 0,
α(α+ 1) · · · (α+ n− 1) , n ≥ 1.

(25)

Proof: The average conditional secrecy outage probability
is obtained by averaging the conditional secrecy outage prob-
ability over all possible locations of Eve within the annulus
threat model, which is given by

P cso(Rs) =

∫ ρ2
o

ρ2
i

Pcso(Rs)

ρ2o − ρ2i
dρ2 (26)

Substituting (21) into (26), we have

P cso(Rs) =
1

ρ2o − ρ2i

∫ ρ2
o

ρ2
i

(
1− γB

γB + 2RsγE

)
dρ2

= 1− 1

ρ2o − ρ2i

∫ ρ2
o

ρ2
i

1

1 + 2Rsc0
γB

(ρ2)
− η

2

dρ2 (27)

We then solve the integral in (27) with the aid of [16, Eq.
(9.100)] and obtain the result in (23) after some algebraic
manipulations.

We note that the Gauss hypergeometric function 2F1(·, ·; ·; ·)
is available in MATLAB, and thus our derived average condi-
tional secrecy outage probability P cso(Rs) can be efficiently
evaluated. Noting (12) and that the transmission probability
Ptx(Rs) is not a function of Eve’s location, the average hybrid
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Fig. 2. Transmission probability Ptx(Rs), hybrid secrecy outage probability
Phso(Rs), and conditional secrecy outage probability Pcso(Rs) of the OOT
scheme versus γB for Rs = 1 and different values of γE .

secrecy outage probability, Phso(Rs), can be easily expressed
as a function of P cso(Rs) and Ptx(Rs), which is given by

Phso(Rs) = 1− Ptx(Rs)
[
1− P cso(Rs)

]
. (28)

V. NUMERICAL RESULTS

In this section, we present numerical results to very our
analysis and draw useful insights on our observations. Without
other statements, we present the specific parameters adopted
in our simulation in the caption of each figure.

In Fig. 2, we plot the theoretic and simulated trans-
mission probability Ptx(Rs), hybrid secrecy outage proba-
bility Phso(Rs), and conditional secrecy outage probability
Pcso(Rs) of the OOT scheme. In Fig. 2, the theoretic Phso(Rs)
is calculated based on Theorem 1 and the simulated Phso(Rs)
is numerically calculated based on (9) with thousands of
channel realizations. In this figure, we first observe that the
simulated Phso(Rs) precisely matches the theoretic Phso(Rs),
which confirms our analysis provided in Theorem 1. We also
observe that the simulated Ptx(Rs) and Pcso(Rs) match the
theoretic Ptx(Rs) and Pcso(Rs), respectively. This confirms
the correctness of (10) and (21). Furthermore, we observe that
the hybrid secrecy outage probability is always larger than the
secrecy secrecy outage probability and the gap between them
decreases as γE increases, which can be explained by (17).

In Fig. 3 we plot the conditional secrecy outage probability
for different values of Rs and its lower bound ϵ. As expected,
we first observe that Pcso(Rs) approaches ϵ as Rs approaches
zero and once Rs is lower than 0.1 the conditional secrecy
outage probability is very close to ϵ. This confirms the
correctness of our Theorem 2. We also observe that both
Pcso(Rs) and ϵ decreases as γB increases and increases as
γE increases.

In Fig. 4 we plot the average hybrid secrecy outage
probability Phso(Rs) and average conditional secrecy outage
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Fig. 3. Strict secrecy outage probability Pcso(Rs) and ϵ of the OOT scheme
versus γE for different values of γB and Rs.

probability P cso(Rs) of the OOT scheme within the annulus
threat model. In the preparation of this figure, we also conduct
simulations to verify our theoretic analysis. As expected,
the simulation results precisely match our theoretic analysis,
which confirms the correctness of our Theorem 3. To avoid
cluttering, we omit the simulation points in this figure. We
first observe that both Phso(Rs) and P cso(Rs) decrease as
ρi increases. This can be explained by the fact that Pcso(Rs)
decreases as Eve moves away from Alice for fixed γB , since
γE decreases as each ρ increases. In addition, we observe that
both Phso(Rs) and P cso(Rs) also decrease as ρo increases.
This is mainly due to the adopted annulus threat model, in
which Eve’s location is uniformly distributed in the annulus
and thus as ρo increases the distance between Eve and Alice
increases on average.

VI. CONCLUSION

In this work, we first revealed two fundamental properties of
the OOT scheme. The first one is that the widely used hybrid
secrecy outage probability can be expressed as a function
of the transmission probability and the conditional secrecy
outage probability of the OOT scheme. This is the first time
to relate the hybrid secrecy outage probability with a practical
transmission scheme in wiretap channels. The second one is
that in the OOT scheme we cannot achieve an arbitrary small
conditional secrecy outage probability through varying the
secrecy rate and the lower bound on this conditional secrecy
outage probability is determined by the average SNRs of the
main channel and the eavesdropper’s channel. Adopting the
annuls threat model, we then derived an expression for the
average conditional secrecy outage probability of the OOT
scheme, which can be evaluated efficiently.
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