4,989 research outputs found
An Interactive Fuzzy Satisficing Method for Fuzzy Random Multiobjective 0-1 Programming Problems through Probability Maximization Using Possibility
In this paper, we focus on multiobjective 0-1 programming problems under the situation where stochastic uncertainty and vagueness exist at the same time. We formulate them as
fuzzy random multiobjective 0-1 programming problems where coefficients of objective functions are fuzzy random variables. For the formulated problem, we propose an interactive fuzzy satisficing method through probability maximization using of possibility
Is there an optimization in bounded rationality? The ratio of aspiration levels
Simon’s (1955) famous paper was one of the first to cast doubt on the validity of rational choice theory; it has been supplemented by many more papers in the last three and a half decades. Nevertheless, rational choice theory plays a crucial role in classical and neoclassical economic theory, which presumes a completely rational agent. The central points characterizing such an agent are: (1) The agent uses all the information that is given to him. (2) The agent has clear preferences with respect to the results of different actions. (3) The agent has adequate competences to optimize his decisions. As an alternative to this conception, Simon (1955) himself suggests the concept of “bounded rationality”. In this context, Simon (1956) discusses a principle, which he names the “satisficing principle” (for explanations with respect to this notion cf. Gigerenzer & Todd 1999, p. 13). It assumes that, instead of searching for an optimal action, the search for an action terminates if an alternative has been found that satisfies a given “aspiration level”. It will be demonstrated that although the satisficing principle is nothing but a heuristic, there is a mathematical optimization at work when aspiration levels are used in this kind of problems. The question about the optimal aspiration level can be posed. Optimization within the framework of bounded rationality is possible. However, the way in which such an optimization can be achieved is very simple: Optimal thresholds in binary sequential decisions rest with the median.
Behavioural Economics: Classical and Modern
In this paper, the origins and development of behavioural economics, beginning with the pioneering works of Herbert Simon (1953) and Ward Edwards (1954), is traced, described and (critically) discussed, in some detail. Two kinds of behavioural economics – classical and modern – are attributed, respectively, to the two pioneers. The mathematical foundations of classical behavioural economics is identified, largely, to be in the theory of computation and computational complexity; the corresponding mathematical basis for modern behavioural economics is, on the other hand, claimed to be a notion of subjective probability (at least at its origins in the works of Ward Edwards). The economic theories of behavior, challenging various aspects of 'orthodox' theory, were decisively influenced by these two mathematical underpinnings of the two theoriesClassical Behavioural Economics, Modern Behavioural Economics, Subjective Probability, Model of Computation, Computational Complexity. Subjective Expected Utility
Linear Superiorization for Infeasible Linear Programming
Linear superiorization (abbreviated: LinSup) considers linear programming
(LP) problems wherein the constraints as well as the objective function are
linear. It allows to steer the iterates of a feasibility-seeking iterative
process toward feasible points that have lower (not necessarily minimal) values
of the objective function than points that would have been reached by the same
feasiblity-seeking iterative process without superiorization. Using a
feasibility-seeking iterative process that converges even if the linear
feasible set is empty, LinSup generates an iterative sequence that converges to
a point that minimizes a proximity function which measures the linear
constraints violation. In addition, due to LinSup's repeated objective function
reduction steps such a point will most probably have a reduced objective
function value. We present an exploratory experimental result that illustrates
the behavior of LinSup on an infeasible LP problem.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0653
A goal programming approach for a joint design of macroeconomic and environmental policies: a methodological proposal and an application to the spanish economy
Economic policy needs to pay more attention to environmental issues. This calls for the development of methodologies capable of incorporating environmental as well as macroeconomic goals in the design of public policies. In view of this, this paper proposes a methodology based upon Simonian satisficing logic implemented with the help of goal programming models to address the joint design of macroeconomic and environmental policies. The methodology is applied to the Spanish economy, where a joint policy is elicited, taking into account macroeconomic goals (economic growth, inflation, unemployment, public deficit) and environmental goals (CO2, NOx and SOx emissions) within the context of a computable general equilibrium model.Environmental policies, goal programming, macroeconomic policies, computable general equilibrium model, multiple criteria decision making, satisficing logic.
- …
