2,102 research outputs found

    Gossip vs. Markov Chains, and Randomness-Efficient Rumor Spreading

    Get PDF
    We study gossip algorithms for the rumor spreading problem which asks one node to deliver a rumor to all nodes in an unknown network. We present the first protocol for any expander graph GG with nn nodes such that, the protocol informs every node in O(log⁥n)O(\log n) rounds with high probability, and uses O~(log⁥n)\tilde{O}(\log n) random bits in total. The runtime of our protocol is tight, and the randomness requirement of O~(log⁥n)\tilde{O}(\log n) random bits almost matches the lower bound of Ω(log⁥n)\Omega(\log n) random bits for dense graphs. We further show that, for many graph families, polylogarithmic number of random bits in total suffice to spread the rumor in O(polylog⁥n)O(\mathrm{poly}\log n) rounds. These results together give us an almost complete understanding of the randomness requirement of this fundamental gossip process. Our analysis relies on unexpectedly tight connections among gossip processes, Markov chains, and branching programs. First, we establish a connection between rumor spreading processes and Markov chains, which is used to approximate the rumor spreading time by the mixing time of Markov chains. Second, we show a reduction from rumor spreading processes to branching programs, and this reduction provides a general framework to derandomize gossip processes. In addition to designing rumor spreading protocols, these novel techniques may have applications in studying parallel and multiple random walks, and randomness complexity of distributed algorithms.Comment: 41 pages, 1 figure. arXiv admin note: substantial text overlap with arXiv:1304.135

    Gossip vs. Markov Chains, and Randomness-Efficient Rumor Spreading

    Get PDF
    We study gossip algorithms for the rumor spreading problem which asks one node to deliver a rumor to all nodes in an unknown network, and every node is only allowed to call one neighbor in each round. In this work we introduce two fundamentally new techniques in studying the rumor spreading problem: First, we establish a new connection between the rumor spreading process in an arbitrary graph and certain Markov chains. While most previous work analyzed the rumor spreading time in general graphs by studying the rate of the number of (un-)informed nodes after every round, we show that the mixing time of a certain Markov chain suffices to bound the rumor spreading time in an arbitrary graph. Second, we construct a reduction from rumor spreading processes to branching programs. This reduction gives us a general framework to derandomize the rumor spreading and other gossip processes. In particular, we show that, for any n-vertex expander graph, there is a protocol which informs every node in O(log n) rounds with high probability, and uses O (log n · log log n) random bits in total. The runtime of our protocol is tight, and the randomness requirement of O (log n· log log n) random bits almost matches the lower bound of Ω(log n) random bits. We further show that, for many graph families (defined with respect to the expansion and the degree), O (poly log n) random bits in total suffice for fast rumor spreading. These results give us an almost complete understanding of the role of randomness in the rumor spreading process, which was extensively studied over the past years

    Noisy Rumor Spreading and Plurality Consensus

    Full text link
    Error-correcting codes are efficient methods for handling \emph{noisy} communication channels in the context of technological networks. However, such elaborate methods differ a lot from the unsophisticated way biological entities are supposed to communicate. Yet, it has been recently shown by Feinerman, Haeupler, and Korman {[}PODC 2014{]} that complex coordination tasks such as \emph{rumor spreading} and \emph{majority consensus} can plausibly be achieved in biological systems subject to noisy communication channels, where every message transferred through a channel remains intact with small probability 12+Ï”\frac{1}{2}+\epsilon, without using coding techniques. This result is a considerable step towards a better understanding of the way biological entities may cooperate. It has been nevertheless be established only in the case of 2-valued \emph{opinions}: rumor spreading aims at broadcasting a single-bit opinion to all nodes, and majority consensus aims at leading all nodes to adopt the single-bit opinion that was initially present in the system with (relative) majority. In this paper, we extend this previous work to kk-valued opinions, for any k≄2k\geq2. Our extension requires to address a series of important issues, some conceptual, others technical. We had to entirely revisit the notion of noise, for handling channels carrying kk-\emph{valued} messages. In fact, we precisely characterize the type of noise patterns for which plurality consensus is solvable. Also, a key result employed in the bivalued case by Feinerman et al. is an estimate of the probability of observing the most frequent opinion from observing the mode of a small sample. We generalize this result to the multivalued case by providing a new analytical proof for the bivalued case that is amenable to be extended, by induction, and that is of independent interest.Comment: Minor revisio

    Quasirandom Rumor Spreading: An Experimental Analysis

    Full text link
    We empirically analyze two versions of the well-known "randomized rumor spreading" protocol to disseminate a piece of information in networks. In the classical model, in each round each informed node informs a random neighbor. In the recently proposed quasirandom variant, each node has a (cyclic) list of its neighbors. Once informed, it starts at a random position of the list, but from then on informs its neighbors in the order of the list. While for sparse random graphs a better performance of the quasirandom model could be proven, all other results show that, independent of the structure of the lists, the same asymptotic performance guarantees hold as for the classical model. In this work, we compare the two models experimentally. This not only shows that the quasirandom model generally is faster, but also that the runtime is more concentrated around the mean. This is surprising given that much fewer random bits are used in the quasirandom process. These advantages are also observed in a lossy communication model, where each transmission does not reach its target with a certain probability, and in an asynchronous model, where nodes send at random times drawn from an exponential distribution. We also show that typically the particular structure of the lists has little influence on the efficiency.Comment: 14 pages, appeared in ALENEX'0

    Quasirandom Rumor Spreading

    Get PDF
    We propose and analyze a quasirandom analogue of the classical push model for disseminating information in networks (“randomized rumor spreading”). In the classical model, in each round, each informed vertex chooses a neighbor at random and informs it, if it was not informed before. It is known that this simple protocol succeeds in spreading a rumor from one vertex to all others within O (log n ) rounds on complete graphs, hypercubes, random regular graphs, ErdƑs-RĂ©nyi random graphs, and Ramanujan graphs with probability 1 − o (1). In the quasirandom model, we assume that each vertex has a (cyclic) list of its neighbors. Once informed, it starts at a random position on the list, but from then on informs its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists, the above-mentioned bounds still hold. In some cases, even better bounds than for the classical model can be shown. </jats:p

    Strong Robustness of Randomized Rumor Spreading Protocols

    Full text link
    Randomized rumor spreading is a classical protocol to disseminate information across a network. At SODA 2008, a quasirandom version of this protocol was proposed and competitive bounds for its run-time were proven. This prompts the question: to what extent does the quasirandom protocol inherit the second principal advantage of randomized rumor spreading, namely robustness against transmission failures? In this paper, we present a result precise up to (1±o(1))(1 \pm o(1)) factors. We limit ourselves to the network in which every two vertices are connected by a direct link. Run-times accurate to their leading constants are unknown for all other non-trivial networks. We show that if each transmission reaches its destination with a probability of p∈(0,1]p \in (0,1], after (1+\e)(\frac{1}{\log_2(1+p)}\log_2n+\frac{1}{p}\ln n) rounds the quasirandom protocol has informed all nn nodes in the network with probability at least 1-n^{-p\e/40}. Note that this is faster than the intuitively natural 1/p1/p factor increase over the run-time of approximately log⁥2n+ln⁥n\log_2 n + \ln n for the non-corrupted case. We also provide a corresponding lower bound for the classical model. This demonstrates that the quasirandom model is at least as robust as the fully random model despite the greatly reduced degree of independent randomness.Comment: Accepted for publication in "Discrete Applied Mathematics". A short version appeared in the proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC 2009). Minor typos fixed in the second version. Proofs of Lemma 11 and Theorem 12 fixed in the third version. Proof of Lemma 8 fixed in the fourth versio

    Dynamics of Rumor Spreading in Complex Networks

    Full text link
    We derive the mean-field equations characterizing the dynamics of a rumor process that takes place on top of complex heterogeneous networks. These equations are solved numerically by means of a stochastic approach. First, we present analytical and Monte Carlo calculations for homogeneous networks and compare the results with those obtained by the numerical method. Then, we study the spreading process in detail for random scale-free networks. The time profiles for several quantities are numerically computed, which allow us to distinguish among different variants of rumor spreading algorithms. Our conclusions are directed to possible applications in replicated database maintenance, peer to peer communication networks and social spreading phenomena.Comment: Final version to appear in PR
    • 

    corecore