531,344 research outputs found

    Constraint Programming viewed as Rule-based Programming

    Full text link
    We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling.We consider here two types of rules. The first type, that we call equality rules, leads to a new notion of local consistency, called {\em rule consistency} that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in \cite{MS98b}). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming we show how both types of rules can be automatically generated, as {\tt CHR} rules of \cite{fruhwirth-constraint-95}. This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.Comment: 39 pages. To appear in Theory and Practice of Logic Programming Journa

    Towards rule-based visual programming of generic visual systems

    Full text link
    This paper illustrates how the diagram programming language DiaPlan can be used to program visual systems. DiaPlan is a visual rule-based language that is founded on the computational model of graph transformation. The language supports object-oriented programming since its graphs are hierarchically structured. Typing allows the shape of these graphs to be specified recursively in order to increase program security. Thanks to its genericity, DiaPlan allows to implement systems that represent and manipulate data in arbitrary diagram notations. The environment for the language exploits the diagram editor generator DiaGen for providing genericity, and for implementing its user interface and type checker.Comment: 15 pages, 16 figures contribution to the First International Workshop on Rule-Based Programming (RULE'2000), September 19, 2000, Montreal, Canad

    Poster Presentation: Xcerpt and XChange – Logic Programming Languages for Querying and Evolution on the Web

    Get PDF
    age Xcerpt and provides advanced, Web-specific capabilities, such as propagation of changes on the Web (change) and event-based communications between Web sites (exchange). Xcerpt: Querying Data on the Web Xcerpt is a declarative, rule-based query language for Web data (i.e. XML documents or semistructured databases) based on logic programming. An Xcerpt program contains at least one goal and some (maybe zero) rules. Rules and goals consist of query and construction patterns, called terms in analogy to other logic programming languages. Terms represent tree-like (or graph-like) structures. The children of a node may be either ordered (as in standard XML) or unordered (as is common in databases). Data terms are used to represent XML documents and the data items of a semistructured database. They are similar to ground functional programming expressions and logical atoms. A database is a (multi-)set of data terms (e.g. the Web). Query terms are patterns matched against Web resources

    Grammar-Guided Genetic Programming For Fuzzy Rule-Based Classification in Credit Management

    Get PDF
    corecore