
Motivation
The Semantic Web is an endeavour aiming at enriching

the existing Web with meta-data and (meta-)data pro-
cessing so as to allow computer systems to actually reas-
on with the data instead of merely rendering it. To this
aim, it is necessary to be able to query and update data
and meta-data. Existing Semantic Web query languages
(like DQL or TRIPLE) are special purpose, i.e. they are
designed for querying and reasoning with special repres-
entations like OWL or RDF, but are not capable of pro-
cessing generic Web data. On the other hand, the lan-
guage Xcerpt presented here is a general purpose lan-
guage that can query any kind of XML data and at the
same time, being based on logic programming, provides
advanced reasoning capabilities. It could thus serve to
implement a wide range of different reasoning formal-
isms.

Likewise, the maintenance and evolution of data on
the (Semantic) Web is necessary: the Web is a “living
organism” whose dynamic character requires languages
for specifying its evolution. This requirement regards not
only updating data from Web resources, but also the
propagation of changes on the Web. These issues have
not received much attention so far, existing update lan-
guages (like XML-RL Update Language) and reactive
languages developed for XML data offer the possibility
to execute just simple update operations and, moreover,
important features needed for propagation of updates on
the Web are still missing. The language XChange also
presented here builds upon the query language Xcerpt
and provides advanced, Web-specific capabilities, such
as propagation of changes on the Web (change) and
event-based communications between Web sites (ex-
change).

Xcerpt: a Logic Language for Web
Querying

Xcerpt is a declarative, rule-based query language for
Web data (i.e. XML documents or semistructured data-
bases) based on logic programming. An Xcerpt program
contains at least one goal and some (maybe zero) rules.
Rules and goals consist of query and construction pat-
terns, called terms in analogy to other logic program-
ming languages.

Web Data as Terms

Data Terms represent
XML documents and
data items in semistruc-
tured databases. They
are similar to ground
functional programming
expressions and logical
atoms. A database is a
(multi-)set of data terms
(e.g. the Web).

Query Terms are patterns
matched against Web re-
sources represented by
data terms. They are sim-
ilar to the latter, but augmented with variables (for se-
lecting data items), possibly with variable restrictions
(restricting the possible bindings to certain subterms),
by partial term specifications (omitting subterms irrel-
evant to the query), and by additional query constructs
like subterm negation, optional subterm specification
and descendant.

Construct Terms serve to reassemble variables (the
bindings of which are specified in query terms) so as
to construct new data terms. Again, they are similar to
the latter, but augmented by variables (acting as place-
holders for data selected in a query) and the grouping

construct all (which serves to collect all instances
that result from different variable bindings).

Construct-Query Rules

Construct-Query rules (short: rules) relate a construct
term to a query consisting of and and/or or connected
query terms. Rules can be seen as ``views'' specifying
how documents shaped in the form of the construct term
can be obtained by evaluating the query against Web re-
sources (e.g. an XML document or a database).

XChange: Evolution of Data on the
Web

Exchanging Events on the Web

The language XChange aims at establishing reactivity,
expressed by reaction rules, as communication
paradigm on the Web. With XChange communication

between Web sites is peer-to-
peer, i.e. all parties have the
same capabilities and can
initiate communication, and
synchronisation can be ex-
pressed, so as to face the
fact that communication on
the Web might be unreliable
and cannot be controlled by
a central instance.

The processing of events
is specified in XChange by
means of event-raising
rules, event-driven update
rules, and event-driven
transaction rules. Event-
raising rules specify events
that are to be constructed
and raised as reaction to in-

coming (internal or external) events.

Propagating Changes on the Web

XChange provides the capability to specify relations
between complex updates and execute the updates con-
formly (e.g. in booking a trip on the Web, one might
wish to book an early flight and of course the corres-
ponding hotel reservation). To deal with network com-
munication problems, an explicit specification of syn-
chronisation operations on updates is needed, a (kind of)
control which logic programming languages lack.

Update rules are rules specifying (possibly complex)
updates. The head of an update rule contains patterns for
the data to be modified, augmented with update opera-

tions (i.e. insertion, deletion, replacement), called update
terms, and the desired synchronisation operations.

As sometimes complex updates need to be executed in
an all-or-nothing manner (e.g. in booking a trip on the

Web, a hotel reservation without a flight reservation is
useless), the concept of transactions (one or more up-
dates treated as one unit) is supported by XChange.
Transactions may be executed on user requests or as re-
actions to incoming events (the latter transactions are
specified using event-driven transaction rules).

voyage {
 currency { "EUR" },
 hotels {
 town { "Ulm" },
 country { "Germany" },
 hotel {
 name { "Comfort Blautal" },
 category { "3 stars" },
 price-per-room { "55" },
 phone { "+49 88 8219 213" },
 no-pets {}
 },
 hotel {
 name { "Inter City" },
 category { "3 stars" },
 price-per-room { "57" },
 phone { "+49 88 8156 135" }
 },
 hotel {
 name { "Maritim" },
 category { "4 stars" },
 price-per-room { "106" },
 phone { "+49 88 8123 414" }
 },
 ...
 },
...
}
Figure: A Data Term representing a hotel database

CONSTRUCT
 answer [
 all var H ordered by [P] ascending
]
FROM
 in {
 resource { "http://hotels.net"},
 voyage {{
 hotels {{
 town { "Ulm" },
 desc var H -> hotel {{
 price-per-room { var P },
 without no-pets {}
 }}
 }}
 }}
 } where var P < 70
END

Figure: Xcerpt Rule to retrieve a list of hotels with a price less
 than 70€ where pets are not disallowed, ordered by price.

TRANSACTION
 and [
 update {
 to { "http://hotels.net" },
 reservations {{
 insert reservation {
 var H, name { "Christina Smith" },
 from { "2004-09-23" },
 until { "2004-09-24" } }
 }}
 },
 update {
 to { "address-book://addresses/husband" },
 addresses {{
 insert my-hotel {
 phone { var Tel },
 remark { "Staying here over night!" } }
 }}
 }
]
ON
 delay {{
 from { "http://railways.com" },
 train {{
 arrival { station { var Town -> "Ulm" },
 estimated-time { var ETime } }
 }}
 }} where var ETime after 23:00
FROM
 in {
 resource { "http://hotels.net" },
 voyage {{
 hotels {{
 town { var Town },
 desc var H -> hotel {{
 price-per-room { var P },
 phone { var Tel }, without no-pets {} }}
 }}
 }}
 } where var P < 70
END
Figure: The travel organizer of Mrs. Smith uses the following event-driven
transaction rule: if the train of Mrs. Smith is delayed such that her arrival
will be after 23:00 then book a hotel at the city of arrival and send the
telephone number of the hotel to her husband's address book.

RAISE
 delay {
 to { "http://travelorganizer.com/Smith" },
 train {
 departure { var M,
 estimated-time { var DT + var Min } },
 arrival { var U,
 estimated-time { var AT + var Min } }
 }
 }
ON
 delay {{
 train {{
 departure {
 var M -> station { "Munich" },
 var Date -> date { "2004-09-23" },
 time { var DT -> "21:30" } },
 minutes-delay { var Min } }}
 }}
FROM
 in {
 resource { "http://railways.com" },
 travel {{
 train {{
 departure {{ var M, var Date, var DT }},
 arrival {{ var U -> station { "Ulm" },
 time { var AT } }} }}
 }}
 }
END

Figure: Mrs. Smith uses a travel organizer, which plans her trips and reacts
to happenings that might influence her schedule.
The site http://railways.com has been told to notify her travel
organizer of delays of trains Mrs. Smith travels with this event-raising rule.

Xcerpt and XChange
Logic Programming Languages for Querying and

Evolution on the Web
François Bry, Paula-Lavinia Pătrânjan, Sebastian Schaffert

http://www.pms.ifi.lmu.de

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Access LMU

https://core.ac.uk/display/18263009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

