340,342 research outputs found

    On the Design of Clean-Slate Network Control and Management Plane

    Get PDF
    We provide a design of clean-slate control and management plane for data networks using the abstraction of 4D architecture, utilizing and extending 4D’s concept of a logically centralized Decision plane that is responsible for managing network-wide resources. In this paper, a scalable protocol and a dynamically adaptable algorithm for assigning Data plane devices to a physically distributed Decision plane are investigated, that enable a network to operate with minimal configuration and human intervention while providing optimal convergence and robustness against failures. Our work is especially relevant in the context of ISPs and large geographically dispersed enterprise networks. We also provide an extensive evaluation of our algorithm using real-world and artificially generated ISP topologies along with an experimental evaluation using ns-2 simulator

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    The importance of better models in stochastic optimization

    Full text link
    Standard stochastic optimization methods are brittle, sensitive to stepsize choices and other algorithmic parameters, and they exhibit instability outside of well-behaved families of objectives. To address these challenges, we investigate models for stochastic minimization and learning problems that exhibit better robustness to problem families and algorithmic parameters. With appropriately accurate models---which we call the aProx family---stochastic methods can be made stable, provably convergent and asymptotically optimal; even modeling that the objective is nonnegative is sufficient for this stability. We extend these results beyond convexity to weakly convex objectives, which include compositions of convex losses with smooth functions common in modern machine learning applications. We highlight the importance of robustness and accurate modeling with a careful experimental evaluation of convergence time and algorithm sensitivity

    Benchmarking and Comparing Popular Visual SLAM Algorithms

    Full text link
    This paper contains the performance analysis and benchmarking of two popular visual SLAM Algorithms: RGBD-SLAM and RTABMap. The dataset used for the analysis is the TUM RGBD Dataset from the Computer Vision Group at TUM. The dataset selected has a large set of image sequences from a Microsoft Kinect RGB-D sensor with highly accurate and time-synchronized ground truth poses from a motion capture system. The test sequences selected depict a variety of problems and camera motions faced by Simultaneous Localization and Mapping (SLAM) algorithms for the purpose of testing the robustness of the algorithms in different situations. The evaluation metrics used for the comparison are Absolute Trajectory Error (ATE) and Relative Pose Error (RPE). The analysis involves comparing the Root Mean Square Error (RMSE) of the two metrics and the processing time for each algorithm. This paper serves as an important aid in the selection of SLAM algorithm for different scenes and camera motions. The analysis helps to realize the limitations of both SLAM methods. This paper also points out some underlying flaws in the used evaluation metrics.Comment: 7 pages, 4 figure
    corecore