340,342 research outputs found
On the Design of Clean-Slate Network Control and Management Plane
We provide a design of clean-slate control and management plane for data networks using the abstraction of 4D architecture, utilizing and extending 4D’s concept of a logically centralized Decision plane that is responsible for managing network-wide resources. In this paper, a scalable protocol and a dynamically adaptable algorithm for assigning Data plane devices to a physically distributed Decision plane are investigated, that enable a network to operate with minimal configuration and human intervention while providing optimal convergence and robustness against failures. Our work is especially relevant in the context of ISPs and large geographically dispersed enterprise networks. We also provide an extensive evaluation of our algorithm using real-world and artificially generated ISP topologies along with an experimental evaluation using ns-2 simulator
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
The importance of better models in stochastic optimization
Standard stochastic optimization methods are brittle, sensitive to stepsize
choices and other algorithmic parameters, and they exhibit instability outside
of well-behaved families of objectives. To address these challenges, we
investigate models for stochastic minimization and learning problems that
exhibit better robustness to problem families and algorithmic parameters. With
appropriately accurate models---which we call the aProx family---stochastic
methods can be made stable, provably convergent and asymptotically optimal;
even modeling that the objective is nonnegative is sufficient for this
stability. We extend these results beyond convexity to weakly convex
objectives, which include compositions of convex losses with smooth functions
common in modern machine learning applications. We highlight the importance of
robustness and accurate modeling with a careful experimental evaluation of
convergence time and algorithm sensitivity
Benchmarking and Comparing Popular Visual SLAM Algorithms
This paper contains the performance analysis and benchmarking of two popular
visual SLAM Algorithms: RGBD-SLAM and RTABMap. The dataset used for the
analysis is the TUM RGBD Dataset from the Computer Vision Group at TUM. The
dataset selected has a large set of image sequences from a Microsoft Kinect
RGB-D sensor with highly accurate and time-synchronized ground truth poses from
a motion capture system. The test sequences selected depict a variety of
problems and camera motions faced by Simultaneous Localization and Mapping
(SLAM) algorithms for the purpose of testing the robustness of the algorithms
in different situations. The evaluation metrics used for the comparison are
Absolute Trajectory Error (ATE) and Relative Pose Error (RPE). The analysis
involves comparing the Root Mean Square Error (RMSE) of the two metrics and the
processing time for each algorithm. This paper serves as an important aid in
the selection of SLAM algorithm for different scenes and camera motions. The
analysis helps to realize the limitations of both SLAM methods. This paper also
points out some underlying flaws in the used evaluation metrics.Comment: 7 pages, 4 figure
- …
