592,121 research outputs found

    Information flow between resting state networks

    Get PDF
    The resting brain dynamics self-organizes into a finite number of correlated patterns known as resting state networks (RSNs). It is well known that techniques like independent component analysis can separate the brain activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully understood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs from resting state magnetic resonance imaging. After haemodynamic response function blind deconvolution of all voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal component analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of Transfer Entropy) between the different RSNs by systematically increasing k (the number of principal components used in the calculation). When k = 1, this method is equivalent to computing IF using the average of all voxel activities in each RSN. For k greater than one our method calculates the k-multivariate IF between the different RSNs. We find that the average IF among RSNs is dimension-dependent, increasing from k =1 (i.e., the average voxels activity) up to a maximum occurring at k =5 to finally decay to zero for k greater than 10. This suggests that a small number of components (close to 5) is sufficient to describe the IF pattern between RSNs. Our method - addressing differences in IF between RSNs for any generic data - can be used for group comparison in health or disease. To illustrate this, we have calculated the interRSNs IF in a dataset of Alzheimer's Disease (AD) to find that the most significant differences between AD and controls occurred for k =2, in addition to AD showing increased IF w.r.t. controls.Comment: 47 pages, 5 figures, 4 tables, 3 supplementary figures. Accepted for publication in Brain Connectivity in its current for

    Local synchronization of resting-state dynamics encodes Gray's trait Anxiety

    Get PDF
    The Behavioral Inhibition System (BIS) as defined within the Reinforcement Sensitivity Theory (RST) modulates reactions to stimuli indicating aversive events. Gray’s trait Anxiety determines the extent to which stimuli activate the BIS. While studies have identified the amygdala-septo-hippocampal circuit as the key-neural substrate of this system in recent years and measures of resting-state dynamics such as randomness and local synchronization of spontaneous BOLD fluctuations have recently been linked to personality traits, the relation between resting-state dynamics and the BIS remains unexplored. In the present study, we thus examined the local synchronization of spontaneous fMRI BOLD fluctuations as measured by Regional Homogeneity (ReHo) in the hippocampus and the amygdala in twenty-seven healthy subjects. Correlation analyses showed that Gray’s trait Anxiety was significantly associated with mean ReHo in both the amygdala and the hippocampus. Specifically, Gray’s trait Anxiety explained 23% and 17% of resting-state ReHo variance in the left amygdala and the left hippocampus, respectively. In summary, we found individual differences in Gray’s trait Anxiety to be associated with ReHo in areas previously associated with BIS functioning. Specifically, higher ReHo in resting-state neural dynamics corresponded to lower sensitivity to punishment scores both in the amygdala and the hippocampus. These findings corroborate and extend recent findings relating resting-state dynamics and personality while providing first evidence linking properties of resting-state fluctuations to Gray’s BIS

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    Thalamo-cortical network activity between migraine attacks. Insights from MRI-based microstructural and functional resting-state network correlation analysis

    Get PDF
    BACKGROUND: Resting state magnetic resonance imaging allows studying functionally interconnected brain networks. Here we were aimed to verify functional connectivity between brain networks at rest and its relationship with thalamic microstructure in migraine without aura (MO) patients between attacks. METHODS: Eighteen patients with untreated MO underwent 3 T MRI scans and were compared to a group of 19 healthy volunteers (HV). We used MRI to collect resting state data among two selected resting state networks, identified using group independent component (IC) analysis. Fractional anisotropy (FA) and mean diffusivity (MD) values of bilateral thalami were retrieved from a previous diffusion tensor imaging study on the same subjects and correlated with resting state ICs Z-scores. RESULTS: In comparison to HV, in MO we found significant reduced functional connectivity between the default mode network and the visuo-spatial system. Both HV and migraine patients selected ICs Z-scores correlated negatively with FA values of the thalamus bilaterally. CONCLUSIONS: The present results are the first evidence supporting the hypothesis that an abnormal resting within networks connectivity associated with significant differences in baseline thalamic microstructure could contribute to interictal migraine pathophysiology

    Phenomenology of retained refractoriness: On semi-memristive discrete media

    Full text link
    We study two-dimensional cellular automata, each cell takes three states: resting, excited and refractory. A resting cell excites if number of excited neighbours lies in a certain interval (excitation interval). An excited cell become refractory independently on states of its neighbours. A refractory cell returns to a resting state only if the number of excited neighbours belong to recovery interval. The model is an excitable cellular automaton abstraction of a spatially extended semi-memristive medium where a cell's resting state symbolises low-resistance and refractory state high-resistance. The medium is semi-memristive because only transition from high- to low-resistance is controlled by density of local excitation. We present phenomenological classification of the automata behaviour for all possible excitation intervals and recovery intervals. We describe eleven classes of cellular automata with retained refractoriness based on criteria of space-filling ratio, morphological and generative diversity, and types of travelling localisations

    Task-Related modulations of BOLD low-frequency fluctuations within the default mode Network

    Get PDF
    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task

    Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity

    Get PDF
    We derive a two-layer multiplex Kuramoto model from weakly coupled Wilson-Cowan oscillators on a cortical network with inhibitory synaptic time delays. Depending on the coupling strength and a phase shift parameter, related to cerebral blood flow and GABA concentration, respectively, we numerically identify three macroscopic phases: unsynchronized, synchronized, and chaotic dynamics. These correspond to physiological background-, epileptic seizure-, and resting-state cortical activity, respectively. We also observe frequency suppression at the transition from resting-state to seizure activity.Comment: 8 pages, 3 figure

    A Laboratory Infection of Alfalfa Weevil, \u3ci\u3eHypera Postica\u3c/i\u3e (Coleoptera: Curculionidae), Larvae With the Fungal Pathogen \u3ci\u3eZoophthora Phytonomi\u3c/i\u3e (Zygomycetes: Entomophthoraceae)

    Get PDF
    Larvae of the alfalfa weevil, Hypera postica, were infected by an in vitro colony of Zoophthora phytonomi. Two spore types (infective conidia, and resting spores) were produced from infection trials. The spore type produced may be influenced by the physiological state of the larvae. Trials using field collected larvae which would produce diapausing adults formed both conidia and resting spores. Trials using larvae from a nondiapausing colony, however, formed only resting spores
    corecore