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Physiologically motivated 
multiplex Kuramoto model 
describes phase diagram of  
cortical activity
Maximilian Sadilek1 & Stefan Thurner1, 2, 3

We derive a two-layer multiplex Kuramoto model from Wilson-Cowan type physiological equations 
that describe neural activity on a network of interconnected cortical regions. This is mathematically 
possible due to the existence of a unique, stable limit cycle, weak coupling, and inhibitory synaptic 
time delays. We study the phase diagram of this model numerically as a function of the inter-
regional connection strength that is related to cerebral blood flow, and a phase shift parameter 
that is associated with synaptic GABA concentrations. We find three macroscopic phases of cortical 
activity: background activity (unsynchronized oscillations), epileptiform activity (highly synchronized 
oscillations) and resting-state activity (synchronized clusters/chaotic behaviour). Previous network 
models could hitherto not explain the existence of all three phases. We further observe a shift of 
the average oscillation frequency towards lower values together with the appearance of coherent 
slow oscillations at the transition from resting-state to epileptiform activity. This observation is fully 
in line with experimental data and could explain the influence of GABAergic drugs both on gamma 
oscillations and epileptic states. Compared to previous models for gamma oscillations and resting-
state activity, the multiplex Kuramoto model not only provides a unifying framework, but also has a 
direct connection to measurable physiological parameters.

Fast electrochemical processes taking place on a complicated cytoarchitectural network structure render 
the human brain a highly complex dynamical system. Brain activity, as measured directly via EEG or 
MEG, or indirectly by means of MRI recordings, reveals characteristic macroscopic patterns such as 
oscillations in various frequency bands1, synchronization2–4, or chaotic dynamics5. Generally it is believed 
that macroscopic activity (involving 10 108 11−  neurons) is closely related to high-level functions such 
as cognition, attention, memory or task execution. To understand the mechanisms of this correspond-
ence, both the overall network structure of the brain and the local properties of neural populations have 
to be taken into account4,6. Regarding the latter, neural inhibition seems to be essential for cortical pro-
cessing7.

Two physiological phenomena received much attention lately in terms of a mathematical understand-
ing: resting-state activity, and gamma oscillations. Resting-state activity is spontaneous, highly structured 
activity of the brain during rest, and can be described in terms of networks of simultaneously active brain 
regions8,9. Models of resting-state networks often rely on anatomical networks derived from histological 
or imaging data, and on local interactions between populations of excitatory and inhibitory neurons10–13. 
Oscillatory neural activity in the gamma range (30 100−  Hz) is potentially related to consciousness and 
the binding problem although its precise function remains unclear14. To understand the origin of gamma 
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oscillations, two mechanisms have been proposed15. One describes interactions between inhibitory neu-
rons together with an external driving force16,17. The other mechanism is based on excitatory-inhibitory 
coupling with synaptic time delays18–20. The relation of gamma oscillations and inhibition is experimen-
tally well established. In mice21, rats22 and humans3,23, a decrease of GABA-concentrations 
(gamma-aminobutyric acid is the main inhibitory neurotransmitter in mammals) is accompanied by a 
strong attenuation of the gamma frequency band and sometimes by epileptiform activity.

Many existing network models for resting-state activity and gamma oscillations are based on 
single-neuron local dynamics10,11,16–19. Since experimentally observed resting-state networks comprise 
individual regions containing about 108 to 109 individual neurons, we believe that a local description in 
terms of Wilson-Cowan equations is an attractive alternative. The subject of multiplex networks received 
recent attention with applications reaching from social and technological systems to economy and evo-
lutionary games24,25.

In this work we derive a simple two-layer multiplex model from classical physiological equations that 
is able to capture the main features of cortical activity such as oscillations, synchronization and chaotic 
dynamics. This model unifies the roles of neural network topology, synaptic time delays, and excitation/
inhibition. It provides a closed framework for simultaneously understanding the origin of resting-state 
activity and gamma oscillations.

Results
Derivation of the multiplex Kuramoto model. We consider N  cortical regions indexed by 
i N1= , … , see Fig. 1a. Each region is populated by ensembles of excitatory and inhibitory neurons (e.g. 
pyramidal cells and interneurons). We define the activity level of a region i as the fraction of firing excit-
atory (inhibitory) neurons of the total number of excitatory (inhibitory) neurons in that region at a unit 
time interval, and denote it by xi (yi). Neglecting for the moment interactions between different regions, 
we assume that individual cortical regions obey the Wilson-Cowan-type dynamics20
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Here aij, bij, cij, dij are positive synaptic coefficients linking regions i and j. τ accounts for transmission 
delays at inhibitory synapses (not to be confused with axonal conduction delays). In physiology, τ can 
be altered by changing the synaptic concentration of GABA18,19,21,22. In the present model, we assume that 
τ is proportional to the average synaptic GABA concentration in the brain. To derive a multiplex 
Kuramoto model (MKM) from Eqs. (1) and (2), we make the following three assumptions:

Figure 1. Schematic illustration of the model setup. a The cortical surface is divided into N  macroscopic 
regions. Every region i (blue) comprises excitatory (green) and inhibitory (red) neural populations with 
activity levels x ti( ) and y ti ( ), respectively. Activity levels quantify the ratio of firing neurons in the region at 
time t. b Region i (left) receives excitatory (green arrows) and inhibitory (red arrows) inputs plus self-
feedback (blue arrows). Inputs from adjacent regions j (right) are weak (dashed arrows) or very weak 
(dotted arrow). c Variable transformation from activity variables x ti( ) and y ti ( ) to phase deviation variables 

tiφ ε( ). On a limit cycle g, ε-perturbations of the x y( , )-dynamics at time t induce the phase deviations tφ ε( ).
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(i) Homogeneity. Cortical regions exhibit nearly identical dynamical behavior. We therefore assume 
the following parameters to be constant across regions,

a b c d a b c d 3i i i i i
x

i
y x yρ ρ ρ ρ ε( , , , , , ) = ( , , , , , ) + ( ) ( )( ) ( ) ( ) ( )

for all i, up to small perturbations, denoted by ε.
(ii) Stable local oscillations. We choose the parameters a b c d x yρ ρ( , , , , , )( ) ( )  such that each uncoupled 

system Eq. (1), under the assumption given in Eq. (3), has a unique exponentially stable limit cycle 
2g ∈ . As a consequence, after a transient time solutions of Eq. (1) can be written as
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where g (t) is an arbitrary solution of Eq. (1) on g 26,27. iϕ  accounts for specific initial values. Let T  denote 
the period of g. We assume that the frequency T1/  lies in the physiological gamma range.

(iii) Weak coupling. Interactions between adjacent regions are weak, and inhibitory-inhibitory inter-
actions are very weak in the sense that,

ε ε ε ε( , , , ) ≡ ( , , , ) + ( ), ( )a b c d A B C 0 5ij ij ij ij ij ij ij
2

for all i j≠ . These assumptions are justified because the number of synaptic connections within a corti-
cal region is much larger than between regions, and excitatory neurons outnumber inhibitory neurons 
by approximately one order of magnitude28,29.

Figure 1b summarizes the connectivity structure between regions i and j. Region i receives excitatory 
(green arrows) and inhibitory (red arrows) inputs plus feedback (blue arrows), magnitudes are indicated 
by the arrow labels. For the sake of clarity, arrows representing inputs of magnitude  1( ),  ε( ) and 
 2ε( ) are drawn in continuous, dashed and dotted style, respectively.

Under these assumptions, the system Eq. (1) with Eq. (2) is equivalent (see SI) to a two-layer MKM
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Here ti
1φ ( ) ∈  describes the deviations from the uncoupled phases t T t2i iθ π ϕ( ) ≡ / ( + ) that are 

associated with solutions of the uncoupled system Eq. (4). Accordingly, d dtiφ /  describes the deviations 
from the uncoupled oscillation frequency T2π/ . Time t has been rescaled, see SI. Aij is the adjacency 
matrix of the excitatory-excitatory interaction network as defined in Eq. (5), and Aij

δ( ) is a linear combi-
nation of the adjacency matrices Bij and Cij. Aij

δ( ) accounts for the interaction between excitatory and 
inhibitory populations, see SI. ≡ / ∑ ,k N A1 i j

N
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average degrees. δ is a phase shift parameter related to the time delay τ via T2δ π τ≡ ( / ) . K is a global 
coupling constant that we assume to be proportional to the cerebral blood flow. This is reasonable because the 
latter is strongly correlated with the connection strengths of functional networks reconstructed in magnetic 
resonance imaging30. iω , the so-called natural frequencies of the MKM, are the constant contribution to the 
frequency deviations d dtiφ / . We take iω  from a symmetric, unimodal random distribution g ω( ), with mean 

0ω . Since the 1-parameter family of rotating-frame transformations t t ti iφ φ Ω( ) → ( ) − , i iω ω Ω→ − , 
leave Eq. (6) invariant for any Ω, without loss of generality we assume, 00ω =  and [0 ]δ π∈ , . Note that for  
each solution tiφ ( )⁎ with [ 2 ]δ π π∈ ,⁎ , there exists a solution tiφ ( ) with 2 [0 ]δ π δ π= − ∈ ,⁎  and  

t ti iφ φ( ) = − ( )⁎. Physiological processes changing δ, K, and iω  occur on a much slower timescale than 
neural activity.

It is known that weakly coupled, nearly identical limit-cycle oscillators can be described in terms of 
phase variables27,31–33. However, in terms of the new variables N1φ φ( … ), interactions between cortical 
regions take place on two independent layers representing excitatory-excitatory and excitatory-inhibitory 
coupling, respectively, and the complicated connectivity structure of Fig. 1b reduces to a simple two-layer 
multiplex structure. Figure 1c shows the variable transformation from activity variables x and y, to the 
phase variable φ for any cortical region. In the unperturbed case, 0ε = , the limit cycle g is parametrized 
by g ( ) = ( ( ), ( ))t x t y t . Since g is exponentially stable, ε-perturbations of activity dynamics 

( ( ), ( ))t x t y t  lead to phase deviations g π φ ε( + /( ) ( ))t T t2 . For 0δ=  we recover the Kuramoto 
model on a single network, see SI and34–39.

Order parameters. We characterize solutions of Eq. (6) by the following order parameters:
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Synchronization. We define the order parameter32–34,40
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It takes values between 0 (no synchronization) and 1 (full synchronization)27. Let r denote its time 
average ≡ ( )r r t t.

Chaotic dynamics. The instantaneous largest Lyapunov exponent is given by
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Figure 2. Dynamical properties of the multiplex Kuramoto model in terms of control- and order parameters 
as obtained by numerical simulation. a Order parameter r and b largest Lyapunov exponent maxλ  identify 
the mutually exclusive regions of synchronization and of chaotic dynamics in the K δ( , )-plane. The critical 
point (K 0 74 0c δ≈ . , = ) indicates a phase transition of Kuramoto type in the case of vanishing synaptic time 
delays. The region K Kc<  is characterized by r 0≈  and 0maxλ ≈ . For K Kc> , either r 0>  and 0maxλ ≈  
(synchronized region) or 0maxλ >  and r 0≈  (chaotic region). Within the chaotic region, the smallest values 
of maxλ  are encountered at K Kc≈ , where 0 1maxλ ≈ . . The largest values of maxλ  occur at the boundary with 
the synchronized region, with peak values of 1maxλ ≈ . c Schematic phase diagram inferred from a and b. 
Synchronized, unsynchronized and chaotic behavior can be clearly distinguished. Dashed arrows indicate 
directions along which distributions of frequency deviations were evaluated in Fig. 3. d Average frequency 
deviations Ω in the K δ( , )-plane. Regions of frequency suppression, 0Ω< , have a large overlap with the 
synchronized phase.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:10015 | DOi: 10.1038/srep10015

where d t t tpφ φ( ) = ( ) − ( )  measures the separation between a reference trajectory tφ ( ) and a per-
turbed one tpφ ( ). d0 is the initial separation at t0, and ⋅  is the 1-norm, see SI. For large times, tmaxλ ( ) 
approaches the “true” largest Lyapunov exponent, maxλ .

Average frequency deviation. We look at average frequency deviations across all regions,

N
d
dt

1
9i

N
i

1
∑Ω
φ

≡ ,
( )=

once a stationary state is reached.

Numerical simulation of the model. Synchronization. We find that synchronization r depends on 
the coupling strength K , and phase shift δ, Fig.  2a. For 0δ= , we expect (see SI) a transition from an 
unsynchronized to a synchronized state at a critical value K 0 74c ≈ . , which is confirmed by our simu-
lations, Fig. 2a. With 0δ > , stronger coupling K  is required for this transition to occur. Above a value 
of approximately 2δ π= / , a global synchronized state ceases to exist.

Chaotic dynamics. Above the synchronization threshold, K K c> , synchronization and chaotic dynamics 
are mutually exclusive, see Fig. 2b. For small values of δ, there exists a small chaotic region ( 0 1maxλ ≈ . ) at 
the Kuramoto transition, in agreement with the well-known results for 0δ= , see SI. This region is expanding 
with increasing values of δ. At the boundary to the synchronized region, increasingly large values of maxλ  are 
obtained. maxλ  peaks at 1maxλ ≈ , for 2δ π≈ / . In the unsynchronized region, K K c< , the dynamics is not 
chaotic, 0maxλ = . For 2δ π> /  and K K c> , which constitutes the largest fraction of the chaotic region, the 
smallest values of Lyapunov exponents that we obtain are between 0 09.  and 0 1. . Those values typically 
occur close to the border to the unsynchronized region, where K  is close to K c. For comparison, we note 
that at the classical Kuramoto transition ( 0δ=  and K K c≈ ), where chaotic behavior of the system is out 
of question35, values of maximally 0.07 are encountered in our model set-up. Figure 2c integrates both 

Figure 3. Stationary distributions of frequency deviations d dtiφ /  for different values of δ (represented by 
different colors as indicated in the legend), and for a subcritical, b weakly and c strongly supercritical values 
of K , respectively. K 0 74c ≈ .  according to Fig. 2. For supercritical K , the simultaneous occurrence of rapid 
frequency suppression and narrowing of the distributions between 5 8δ π≈ /  and 3 8δ π≈ /  can be observed.
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results (synchronization and chaotic dynamics) into a schematic phase diagram that clearly exhibits three 
phases.

Spectral properties. Figure 3a–c shows the stationary distributions of frequency deviations d dtiφ /  for 
selected values in the (K ,δ)-plane. For K 0= , the distributions are practically identical for different values 
of δ, Fig. 3a. For K 2 5= . , at 0δ= , a synchronization peak appears close to frequency zero. With increasing 
δ, this peak moves towards increasingly negative values, until 3 8δ π≈ / . Between 3 8δ π≈ /  and 5 8π/ , 
the distribution is rapidly becoming broader and shifts towards positive values. After reaching a maxi-
mum at 3 4δ π≈ / , it is finally centered around zero again, Fig.  3b. K 5= , is similar, however larger 
positive and negative values for d dtiφ /  occur, Fig. 3c.

Figure 2d shows the average frequency deviation Ω as a function of K  and δ. As expected (see SI), we 
find frequency suppression associated with synchronization in the region of large K  and small δ, but also 
for large K  and intermediate δ. For fixed K , maximal frequency suppression occurs at 3 8δ π≈ / . For 
large K  and large δ (chaotic region) we find slightly positive Ω.

Robustness issues
Homogeneity. The derivation of the MKM is based on three key assumptions, see Eqs. (3)–(5). If Eq. 
(3) is violated, i.e. the ensemble of uncoupled Wilson-Cowan oscillators is strongly heterogenous, several 
oscillation periods T i may occur i N1( = , … ). As a consequence, weak interactions become 
frequency-modulated27: Two oscillators interact only if their frequencies T1 1/  and T1 2/  are similar, in 
the sense that m T m T1 1 2 2/ ≈ / , where m1 and m2 are small numbers.

Uniqueness of local oscillations. Regarding Eq. (4), discarding the uniqueness of the limit cycles 
would result in heterogenous coupling strengths K ij, or Kij

δ( ).

Stability of local oscillations and weak coupling. In contrast, both the exponential stability of the 
limit cycles and the weak coupling assumption, Eq. (5), are strictly necessary for the derivation of the 
MKM, since they allow for a dimensional reduction from activity- to phase deviation variables (see SI). 
If the dimensional reduction can not be carried through, the full system Eq. (1) with Eq. (2) has to be 
studied, whose properties are much harder to access.

Numerical simulation. We tested the model for robustness with respect to the particular choice of 
parameters. As suggested by various brain atlases and cortical parcellation schemes, a number of 
N 100 150≈ −  cortical regions seems reasonable41,42. We tested up to N 500=  and found no deviations 
from the presented qualitative picture. For the link density p, we find that as long as it exceeds the per-
colation threshold, p N Nlog> ( )/ , differences in simulations are marginal. Finally, we observe that like 
in the original Kuramoto model32,33, for different natural frequency distributions g ω( ) the qualitative 
behaviour remains practically unchanged as long as g ω( ) is unimodal and symmetric.

Discussion
In several variants of single-layer Kuramoto models with a phase shift or a time delay, frequency sup-
pression appears37,39,43,44. In addition39, mentions chaotic behavior. However, the existence of the phase 
diagram with the three distinct macroscopic phases can not be inferred from any of those models to the 
best of our knowledge.

In Ref. 45, several modes of synchronization are reported for a Kuramoto model on two intercon-
nected networks with an inter-network time delay. While this computational model does not exhibit 
chaotic or unsynchronized phases, it suggests that a more complicated network topology can lead to a 
deeper structure within the synchronized phase in Kuramoto-type models.

Since the present work emphasizes the derivation of the MKM and the study of its stationary prop-
erties, we did not investigate the details of the synchronization transition. In this context we mention 
that the emergence of synchronization follows different paths in different types of networks46. Further, if 
a correlation between natural frequencies iω  and network properties is assumed, explosive synchroniza-
tion and hysteretic effects may appear47.

Summarizing, we can show mathematically that a set of weakly coupled Wilson-Cowan oscillators on 
a cortical network with a synaptic time delay between excitatory and inhibitory neural populations is 
identical to a simple Kuramoto-type phase model on a two-layer multiplex network. Numerical investi-
gations of this model reveal the presence of three distinct macroscopic phases in the space of control 
parameters K  (associated with cerebral blood flow) and δ (associated with synaptic GABA concentra-
tion). For couplings K K c< , activities of individual cortical regions show independent oscillatory behav-
ior (unsynchronized). Frequencies are distributed symmetrically around an average frequency that we 
assume to be located in the physiological gamma range. This dynamical state corresponds to 
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“background activity” of the brain. For K K c> , two phases are possible: for small δ, the system becomes 
synchronized, which corresponds to “epileptic seizure activity” in physiology. For large δ, synchronized 
activity only appears in clusters; the system is chaotic in general. We identify this phase with “resting-state 
activity” in the brain. An important property of the present model is that the average oscillation fre-
quency is shifted towards lower values when crossing the boundary to the synchronized phase. This 
could explain the experimental fact2,21–23 that a decrease of the GABA concentration in the resting-state 
both triggers the appearance of epileptiform slow waves and diminishes gamma activity in the brain.

Methods
Equation (6) is integrated with a standard 4th-order Runge-Kutta algorithm with 500 time steps of size 
dt 0 1= . . The system size is N 100= , both layers are chosen to be Erdös-Rényi networks with p 0 06= . . 
Natural frequencies iω  are taken from a standard normal distribution, initial phase deviations 0iφ ( ) from 
the interval [0 2 ]π, . The first 250 time steps are discarded to exclude transient effects. For the remaining 
time steps, r, maxλ , and Ω are evaluated. All results are averaged over 100 identical, independent runs 
with different realizations of the initial conditions.
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