204 research outputs found

    Symbolic modeling of structural relationships in the Foundational Model of Anatomy

    Get PDF
    The need for a sharable resource that can provide deep anatomical knowledge and support inference for biomedical applications has recently been the driving force in the creation of biomedical ontologies. Previous attempts at the symbolic representation of anatomical relationships necessary for such ontologies have been largely limited to general partonomy and class subsumption. We propose an ontology of anatomical relationships beyond class assignments and generic part-whole relations and illustrate the inheritance of structural attributes in the Digital Anatomist Foundational Model of Anatomy. Our purpose is to generate a symbolic model that accommodates all structural relationships and physical properties required to comprehensively and explicitly describe the physical organization of the human body

    Terminologia Anatomica; Considered from the Perspective of Next-Generation Knowledge Sources

    Get PDF
    This report examines the semantic structure of Terminologia Anatomica, taking one randomly selected page as an example. The focus of analysis is the meaning imparted to an anatomical term by virtue of its location within the structured list. Terminologia’s structure expressed through hierarchies of headings, varied typographical styles, indentations and an alphanumeric code implies specific relationships between the terms embedded in the list. Together, terms and relationships can potentially capture essential elements of anatomical knowledge. The analysis focuses on these knowledge elements and evaluates the consistency and logic in their representation. Most critical of these elements are class inclusion and part-whole relationships, which are implied, rather than explicitly modeled by Terminologia. This limits the use of the term list to those who have some knowledge of anatomy and excludes computer programs from navigating through the terminology. Assuring consistency in the explicit representation of anatomical relationships would facilitate adoption of Terminologia as the anatomical standard by the various controlled medical terminology (CMT) projects. These projects are motivated by the need for computerizing the patient record, and their aim is to generate machineunderstandable representations of biomedical concepts, including anatomy. Because of the lack of a consistent and explicit representation of anatomy, each of these CMTs has generated it own anatomy model. None of these models is compatible with each other, yet each is consistent with textbook descriptions of anatomy. The analysis of the semantic structure of Terminologia Anatomica leads to some suggestions for enhancing the term list in ways that would facilitate its adoption as the standard for anatomical knowledge representation in biomedical informatics

    Semi-automatic Database Design for Neuroscience Experiment Management Systems

    Get PDF
    Neuroinformatics provides tools for neuroscience researchers to study brain function. In order to handle experiment paradigms that change frequently, we are developing a semiautomatic database design tool that will enable an experiment management system (EMS) to manage data with flexibility while retaining the efficiency of a relational database

    The Role of Foundational Relations in the Alignment of Biomedical Ontologies

    Get PDF
    The Foundational Model of Anatomy (FMA) symbolically represents the structural organization of the human body from the macromolecular to the macroscopic levels, with the goal of providing a robust and consistent scheme for classifying anatomical entities on the basis of explicit definitions. This scheme also provides a template for modeling pathology, physiological function and genotype-phenotype correlations, and it can thus serve as a reference ontology in biomedical informatics. Here we articulate the need for formally clarifying the is-a and partof relations in the FMA and similar ontology and terminology systems. We diagnose certain characteristic errors in the treatment of these relations and show how these errors can be avoided through adoption of the formalism we describe. We then illustrate how a consistently applied formal treatment of taxonomy and partonomy can support the alignment of ontologies

    Using multiple reference ontologies: Managing composite annotations

    Get PDF
    There are a growing number of reference ontologies available across a variety of biomedical domains and current research focuses on their construction, organization and use. An important use case for these ontologies is annotation—where users create metadata that access concepts and terms in reference ontologies. We draw on our experience in physiological modeling to present a compelling use case that demonstrates the potential complexity of such annotations. In the domain of physiological biosimulation, we argue that most annotations require the use of multiple reference ontologies. We suggest that these “composite” annotations should be retained as a repository of knowledge about post-coordination that promotes sharing and interoperation across biosimulation models

    An Intuitive Graphical Query Interface for Protégé Knowledge Bases

    Get PDF
    Emily is a graphical query engine for Protégé knowledge bases that was developed by the Structural Informatics Group (SIG) at the University of Washington. Currently this application is adapted for a specific knowledge model, the Foundational Model of Anatomy (FMA) [1], but it could readily be generalized for use with other Protégé knowledge bases. In developing the Emily query interface, our intent was to provide a tool that was simple and intuitive to use, like the Queries tab provided with Protégé, but with improved information retrieval capabilities. Although some more advanced query mechanisms exist, currently they are too complicated for non-expert end users. The Algernon tab [2], for example, provides extensive Protégé query capabilities but requires users to learn a query scripting language. We sought to develop a query interface that was intuitive enough for end users to operate, with only minor instruction, yet was powerful enough to gather interesting information from a knowledge base that was not easily attained by browsing alone

    Surface Projection Method for Visualizing Volumetric Data

    Get PDF
    The goal of this project was to explore, develop, and implement additional visualization methods for volumetric data within MindSeer. This paper discusses the implementation of one such visualization method, the surface projection method, and compares it to other existing methods

    Results Visualization in the XBrain XML Interface to a Relational Database

    Get PDF
    The University of Washington's XBrain application is used to dynamically export relational data over the web in XML format, as a prelude to data exchange. We describe additional tools to aid the human user in visualizing the dynamically generated XML results returned by the web application

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions
    • …
    corecore