683,376 research outputs found

    Strongly walk-regular graphs

    Get PDF
    We study a generalization of strongly regular graphs. We call a graph strongly walk-regular if there is an >1\ell >1 such that the number of walks of length \ell from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. We will show that a strongly walk-regular graph must be an empty graph, a complete graph, a strongly regular graph, a disjoint union of complete bipartite graphs of the same size and isolated vertices, or a regular graph with four eigenvalues. Graphs from the first three families in this list are indeed strongly \ell-walk-regular for all \ell, whereas the graphs from the fourth family are \ell-walk-regular for every odd \ell. The case of regular graphs with four eigenvalues is the most interesting (and complicated) one. Such graphs cannot be strongly \ell-walk-regular for even \ell. We will characterize the case that regular four-eigenvalue graphs are strongly \ell-walk-regular for every odd \ell, in terms of the eigenvalues. There are several examples of infinite families of such graphs. We will show that every other regular four-eigenvalue graph can be strongly \ell-walk-regular for at most one \ell. There are several examples of infinite families of such graphs that are strongly 3-walk-regular. It however remains open whether there are any graphs that are strongly \ell-walk-regular for only one particular \ell different from 3

    On Hamilton Decompositions of Line Graphs of Non-Hamiltonian Graphs and Graphs without Separating Transitions

    Get PDF
    In contrast with Kotzig's result that the line graph of a 33-regular graph XX is Hamilton decomposable if and only if XX is Hamiltonian, we show that for each integer k4k\geq 4 there exists a simple non-Hamiltonian kk-regular graph whose line graph has a Hamilton decomposition. We also answer a question of Jackson by showing that for each integer k3k\geq 3 there exists a simple connected kk-regular graph with no separating transitions whose line graph has no Hamilton decomposition

    Non-existence of (76,30,8,14) strongly regular graph

    Full text link
    We prove the non-existence of strongly regular graph with parameters (76,30,8,14)(76,30,8,14). We use Euclidean representation of a strongly regular graph together with a new lower bound on the number of 4-cliques to derive strong structural properties of the graph, and then use these properties to show that the graph cannot exist

    Hamiltonian Strongly Regular Graphs

    Get PDF
    We give a sufficient condition for a distance-regular graph to be Hamiltonian. In particular, the Petersen graph is the only connected non-Hamiltonian strongly regular graph on fewer than 99 vertices.Distance-regular graphs;Hamilton cycles JEL-code

    No finite 55-regular matchstick graph exists

    Full text link
    A graph G=(V,E)G=(V,E) is called a unit-distance graph in the plane if there is an injective embedding of VV in the plane such that every pair of adjacent vertices are at unit distance apart. If additionally the corresponding edges are non-crossing and all vertices have the same degree rr we talk of a regular matchstick graph. Due to Euler's polyhedron formula we have r5r\le 5. The smallest known 44-regular matchstick graph is the so called Harborth graph consisting of 5252 vertices. In this article we prove that no finite 55-regular matchstick graph exists.Comment: 15 pages, 12 figures, 2 table
    corecore