2,712 research outputs found

    Online Convex Optimization for Sequential Decision Processes and Extensive-Form Games

    Full text link
    Regret minimization is a powerful tool for solving large-scale extensive-form games. State-of-the-art methods rely on minimizing regret locally at each decision point. In this work we derive a new framework for regret minimization on sequential decision problems and extensive-form games with general compact convex sets at each decision point and general convex losses, as opposed to prior work which has been for simplex decision points and linear losses. We call our framework laminar regret decomposition. It generalizes the CFR algorithm to this more general setting. Furthermore, our framework enables a new proof of CFR even in the known setting, which is derived from a perspective of decomposing polytope regret, thereby leading to an arguably simpler interpretation of the algorithm. Our generalization to convex compact sets and convex losses allows us to develop new algorithms for several problems: regularized sequential decision making, regularized Nash equilibria in extensive-form games, and computing approximate extensive-form perfect equilibria. Our generalization also leads to the first regret-minimization algorithm for computing reduced-normal-form quantal response equilibria based on minimizing local regrets. Experiments show that our framework leads to algorithms that scale at a rate comparable to the fastest variants of counterfactual regret minimization for computing Nash equilibrium, and therefore our approach leads to the first algorithm for computing quantal response equilibria in extremely large games. Finally we show that our framework enables a new kind of scalable opponent exploitation approach

    Competing With Strategies

    Full text link
    We study the problem of online learning with a notion of regret defined with respect to a set of strategies. We develop tools for analyzing the minimax rates and for deriving regret-minimization algorithms in this scenario. While the standard methods for minimizing the usual notion of regret fail, through our analysis we demonstrate existence of regret-minimization methods that compete with such sets of strategies as: autoregressive algorithms, strategies based on statistical models, regularized least squares, and follow the regularized leader strategies. In several cases we also derive efficient learning algorithms

    On the Impossibility of Regret Minimization in Repeated Games

    Get PDF
    Regret minimizing strategies for repeated games have been receiving increasing attention in the literature. These are simple adaptive behavior rules that exhibit nice convergence properties. If all players follow regret minimizing strategies, their average joint play converges to the set of correlated equilibria or to the Hannan set (depending on the notion of regret in use), or even to Nash equilibrium on certain classes of games. In this note we raise the question of validity of the regret minimization objective. By example we show that regret minimization can lead to unrealistic behavior, since it fails to take into account the effect of one's actions on subsequent behavior of the opponents. An amended notion of regret that corrects this defect is not very useful either, since achieving a no-regret objective is not guaranteed in that case.Repeated games, Regret minimization, No-regret strategy

    Iterated Regret Minimization in Game Graphs

    Full text link
    Iterated regret minimization has been introduced recently by J.Y. Halpern and R. Pass in classical strategic games. For many games of interest, this new solution concept provides solutions that are judged more reasonable than solutions offered by traditional game concepts -- such as Nash equilibrium --. Although computing iterated regret on explicit matrix game is conceptually and computationally easy, nothing is known about computing the iterated regret on games whose matrices are defined implicitly using game tree, game DAG or, more generally game graphs. In this paper, we investigate iterated regret minimization for infinite duration two-player quantitative non-zero sum games played on graphs. We consider reachability objectives that are not necessarily antagonist. Edges are weighted by integers -- one for each player --, and the payoffs are defined by the sum of the weights along the paths. Depending on the class of graphs, we give either polynomial or pseudo-polynomial time algorithms to compute a strategy that minimizes the regret for a fixed player. We finally give algorithms to compute the strategies of the two players that minimize the iterated regret for trees, and for graphs with strictly positive weights only.Comment: 19 pages. Bug in introductive example fixed
    corecore