4,568,856 research outputs found
Regression modeling for digital test of ΣΔ modulators
The cost of Analogue and Mixed-Signal circuit
testing is an important bottleneck in the industry, due to timeconsuming
verification of specifications that require state-ofthe-
art Automatic Test Equipment. In this paper, we apply
the concept of Alternate Test to achieve digital testing of
converters. By training an ensemble of regression models that
maps simple digital defect-oriented signatures onto Signal to
Noise and Distortion Ratio (SNDR), an average error of 1:7%
is achieved. Beyond the inference of functional metrics, we show
that the approach can provide interesting diagnosis information.Ministerio de Educación y Ciencia TEC2007-68072/MICJunta de Andalucía TIC 5386, CT 30
Branch and bound method for regression-based controlled variable selection
Self-optimizing control is a promising method for selection of controlled variables (CVs) from available measurements. Recently, Ye, Cao, Li, and Song (2012) have proposed a globally optimal method for selection of self-optimizing CVs by converting the CV selection problem into a regression problem. In this approach, the necessary conditions of optimality (NCO) are approximated by linear combinations of available measurements over the entire operation region. In practice, it is desired that a subset of available measurements be combined as CVs to obtain a good trade-off between the economic performance and the complexity of control system. The subset selection problem, however, is combinatorial in nature, which makes the application of the globally optimal CV selection method to large-scale processes difficult. In this work, an efficient branch and bound (BAB) algorithm is developed to handle the computational complexity associated with the selection of globally optimal CVs. The proposed BAB algorithm identifies the best measurement subset such that the regression error in approximating NCO is minimized and is also applicable to the general regression problem. Numerical tests using randomly generated matrices and a binary distillation column case study demonstrate the computational efficiency of the proposed BAB algorithm
Regression games
The solution of a TU cooperative game can be a distribution of the value of the grand coalition, i.e. it can be a distribution of the payo (utility) all the players together achieve. In a regression model, the evaluation of the explanatory variables can be a distribution of the overall t, i.e. the t of the model every regressor variable is involved. Furthermore, we can take regression models as TU cooperative games where the explanatory (regressor) variables are the players. In this paper we introduce the class of regression games, characterize it and apply the Shapley value to evaluating the explanatory variables in regression models. In order to support our approach we consider Young (1985)'s axiomatization of the Shapley value, and conclude that the Shapley value is a reasonable tool to evaluate the explanatory variables of regression models
Functional Regression
Functional data analysis (FDA) involves the analysis of data whose ideal
units of observation are functions defined on some continuous domain, and the
observed data consist of a sample of functions taken from some population,
sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the
development of this field, which has accelerated in the past 10 years to become
one of the fastest growing areas of statistics, fueled by the growing number of
applications yielding this type of data. One unique characteristic of FDA is
the need to combine information both across and within functions, which Ramsay
and Silverman called replication and regularization, respectively. This article
will focus on functional regression, the area of FDA that has received the most
attention in applications and methodological development. First will be an
introduction to basis functions, key building blocks for regularization in
functional regression methods, followed by an overview of functional regression
methods, split into three types: [1] functional predictor regression
(scalar-on-function), [2] functional response regression (function-on-scalar)
and [3] function-on-function regression. For each, the role of replication and
regularization will be discussed and the methodological development described
in a roughly chronological manner, at times deviating from the historical
timeline to group together similar methods. The primary focus is on modeling
and methodology, highlighting the modeling structures that have been developed
and the various regularization approaches employed. At the end is a brief
discussion describing potential areas of future development in this field
Truthful Linear Regression
We consider the problem of fitting a linear model to data held by individuals
who are concerned about their privacy. Incentivizing most players to truthfully
report their data to the analyst constrains our design to mechanisms that
provide a privacy guarantee to the participants; we use differential privacy to
model individuals' privacy losses. This immediately poses a problem, as
differentially private computation of a linear model necessarily produces a
biased estimation, and existing approaches to design mechanisms to elicit data
from privacy-sensitive individuals do not generalize well to biased estimators.
We overcome this challenge through an appropriate design of the computation and
payment scheme.Comment: To appear in Proceedings of the 28th Annual Conference on Learning
Theory (COLT 2015
- …
