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Highlights

• A new Branch and Bound algorithm for regression based globally optimal controlled variable
selection is proposed.

• Local shortcoming of existing self-optimizing control approach is overcome.

• New pruning algorithm makes the Branch and Bound much more efficient.

• Efficiency and effectiveness of the algorithm are demonstrated though numerical examples.
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Abstract

Self-optimizing control is a promising method for selection of controlled variables
(CVs) from available measurements. Recently, Ye et al. [2012] have proposed a
globally optimal method for selection of self-optimizing CVs by converting the CV
selection problem into a regression problem. In this approach, the necessary condi-
tions of optimality (NCO) are approximated with linear combinations of available
measurements over the entire operation region. In practice, it is desired that a subset
of available measurements be combined as CVs to obtain a good trade-off between
the economic performance and the complexity of control system. The subset selec-
tion problem, however, is combinatorial in nature, which makes the application of
the globally optimal CV selection method to large-scale processes difficult. In this
work, an efficient branch and bound (BAB) algorithm is developed to handle the
computational complexity associated with the selection of globally optimal CVs.
The proposed BAB algorithm identifies the best measurement subset such that the
regression error in approximating NCO is minimized and is also applicable to the
general regression problem. Numerical tests using randomly generated matrices and
a binary distillation column case study demonstrate the computational efficiency of
the proposed BAB algorithm.
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1 Introduction

The selection of controlled variables (CVs) from available measurements is an
important task during the design of control systems. For CV selection, several
methods based on controllability and achievable performance as the selection
criteria have been proposed in the literature; see e.g. Van De Wal and De Jager
[2001] for an overview. Recently, Skogestad [2000] introduced the concept of
self-optimizing control for selection of CVs based on process economics. In this
approach, CVs are selected such that in presence of disturbances, as compared
to the use of a real-time optimizer, the loss incurred in implementing the op-
erational policy by holding the selected CVs at constant setpoints is minimal.
The advantages of self-optimizing control approach for CV selection has been
demonstrated through several case studies [Rangaiah and Kariwala, 2012].

The choice of CVs based on the general non-linear formulation of self-optimizing
control requires solving large-dimensional non-convex optimization problems [Sko-
gestad, 2000]. To quickly pre-screen alternatives, minimum singular value
rule [Skogestad and Postlethwaite, 2005] as well as exact local methods with
worst-case [Halvorsen et al., 2003] and average loss minimization [Kariwala
et al., 2008] have been proposed. These local methods are useful for select-
ing a subset or linear combinations of available measurements as CVs, where
the latter approach provides lower losses. Recently, explicit solutions to the
problem of finding locally optimal measurement combinations have been pro-
posed [Alstad et al., 2009; Heldt, 2010; Kariwala, 2007; Kariwala et al., 2008].
Hu et al. [2012] have proposed a local method to explicitly handle the input
and output constraints during CV selection.

The available CV selection criteria are derived based on local linearization of
the process model. Recently, a globally optimal CV selection framework has
been proposed by Ye et al. [2012, 2013]. In this framework, the CV synthesis
problem is converted into a regression problem using CVs as measurement
combinations to approximate the Necessary Conditions of Optimality (NCO)
globally over the entire operation region. It has been proven that the average
loss is globally minimized when the regression error is minimal over the entire
operation region and the measurement combinations as CVs are perfectly
controlled at zero. A number of linear and nonlinear regression models have
been adopted to approximate the NCO. Case studies showed that all these
models are able to significantly reduce the average loss, as compared to those
CVs designed using existing local methods.

It is known that the use of combinations of a few measurements as CVs often
provide similar loss as the case where combinations of all available measure-
ments are used [Alstad et al., 2009; Kariwala, 2007; Kariwala et al., 2008; Ye
et al., 2013]. Though the former approach results in control structures with
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lower complexity, it gives rise to a combinatorial optimization problem involv-
ing selection of measurements, whose combinations can be used as CVs. For
local self-optimizing control methods, a number of efficient branch and bound
(BAB) approaches, called bidirectional BAB (B3) methods have been pro-
posed to solve this combinatorial problem efficiently [Cao and Kariwala, 2008;
Kariwala and Cao, 2009; Kariwala and Y.Cao, 2010]. These BAB algorithms
are not required for the selection of individual measurements as globally opti-
mal CVs, as approximations of individual gradients are not correlated and can
be solved separately overcoming combinatorial issues. However, to select mea-
surement combinations, the combinatorial difficulty still exists for the global
CV selection problem.

With this motivation, the BAB framework is extended to measurement sub-
set selection for synthesis of globally optimal CVs chosen as linear combina-
tions of measurements. It is proven that the selection criterion is equivalent
to a quadratic problem, for which a standard BAB algorithm [Narendra and
Fukunaga, 1977] exists. The standard algorithm is improved into a downwards
BAB algorithm. The efficiency and effectiveness of the proposed BAB algo-
rithm is demonstrated through randomly generated matrices and a distillation
case study [Skogestad, 1997].

The rest of the paper is organized as follows: the local and global methods
for CV selection using the concept of self-optimizing control are discussed in
Sections 2 and 3, respectively. The general principle of BAB approach and
its adaptation for global CV selection are presented in Section 4. Numerical
examples to demonstrate the efficiency of proposed BAB method are shown
in Section 5. Finally, Section 6 concludes the paper.

2 Local Methods for Self-Optimizing Control

Consider that the steady-state economics of the plant is characterized by the
scalar objective function J(u,d), where u ∈ Rnu and d ∈ Rnd are inputs
and disturbances, respectively. The optimal operation policy is to update u
according to d, which usually requires the use of an online optimizer. For this
case, let the optimal value of the objective function be denoted as Jopt(d). A
simpler strategy involves indirect adjustment of u using a feedback controller.
In this case, the feedback controller manipulates u to hold the CVs c close to
their specified setpoints. Here, in addition to d, J is also affected by the error e
in implementing the constant setpoint policy, which results due to uncertainty
and measurement noise. The suboptimal objective functional value under the
second strategy is denoted as Jc(n,d). Then, the worst-case and average losses
due to the use of the suboptimal strategy are given as

3
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Worst-case loss = max
e∈E

max
d∈D

(Jopt(d)− Jc(n,d)) (1)

Average loss =E[Jopt(d)− Jc(n,d)] (2)

where D and E represent the sets of allowable disturbances and implemen-
tation errors, respectively, and E is the expectation operator. Self-optimizing
control is said to occur, when we can achieve an acceptable loss by holding the
CVs close to their setpoints without the need to reoptimize when disturbances
occur [Skogestad, 2000]. Based on this concept, the appropriate CVs can be
selected by comparing the losses for different alternatives.

As mentioned earlier, the use of nonlinear formulation of self-optimizing con-
trol is difficult. Hence, some local methods were developed to estimate the
losses defined in (1) and (2) by linearising the process model around the nor-
mally optimal operating point as follows:

y = My u + My
d Wd d + We e (3)

where y ∈ Rny denotes the process measurements and e ∈ Rny denotes the
implementation error. Here, the diagonal matrices Wd and We contain the
expected magnitudes of disturbances and implementation error, respectively.
The CVs c ∈ Rnu are given as

c = H y = M u + Md Wd d + H We e (4)

where H is a selection or combination matrix and

M = H My, Md = H My
d (5)

It is assumed that M ∈ Rnu×nu is invertible. This assumption is necessary for
integral control. When d and e are assumed to be uniformly distributed over
the set

∥∥∥∥∥
[
dT eT

]T ∥∥∥∥∥
2

≤ 1 (6)

the local worst-case and average losses are given as [Halvorsen et al., 2003;
Kariwala et al., 2008]:

Lworst(H) = 0.5σ̄2
(
J1/2
uu (H My)−1H P

)
(7)

Laverage(H) =
1

6(ny + nd)

∥∥∥J1/2
uu (H My)−1H P

∥∥∥2
F

(8)

4
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where σ̄ and ‖ · ‖F denote the maximum singular value and Frobenius norm,
respectively, and

P =
[

(My J−1uu Jud −My
d) Wd We

]
(9)

with Juu = ∂2J
∂u2 and Jud = ∂2J

∂u∂d
, evaluated at the nominal operating point.

In comparison with worst-case loss, the selection of CVs is preferred through
minimization of average loss, as the worst-case may not occur frequently in
practice [Kariwala et al., 2008].

When individual measurements are selected as CVs, H can be considered to be
a selection matrix. Instead of using individual measurements, it is possible to
use combinations of measurements as CVs. For this case, the following explicit
expression for H can be derived, which minimizes the Laverage in (8) [Alstad
et al., 2009; Rangaiah and Kariwala, 2012]:

HT = (PPT )−1My (10)

As shown by Kariwala et al. [2008], the H in (10) also minimizes Lworst in (7).
The locally optimal combinations of all the available measurements, which can
be used as CVs can be found using (10).

3 Globally Optimal Method

The local methods [Halvorsen et al., 2003; Kariwala et al., 2008] are based
on linearization around the nominally optimal operating point. Therefore, the
identified CVs are only locally optimal. To derive globally optimal solution
CVs, it is assumed that the NCO is approximated by CVs and the CVs are
perfectly controlled at zero. Then, the loss, L(d) for a particular disturbance
d, due to the approximation error, ε(d) can be expressed as [Ye et al., 2012,
2013]:

L(d) = 0.5εT (d)Q−1(d)ε(d) (11)

where Q(d) is the reduced Hessian of the cost function evaluated at point
where the CV, c(d) is perfectly controlled corresponding to particular dis-
turbance, d, whilst ε(d) = g(d) − c(d), where g(d) is the reduced gradient
evaluated at the same point.

5
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The average loss over the entire operation region, D can be represented as,

L̄ = Ed∈DL(d) ≈ 1

2N

N∑
i=1

ε(di)
TQ−1(di)ε(di) (12)

where di ∈ D, i = 1, . . . , N are N samples of disturbances in D.

According to (12), the loss minimization is equivalent to a least squares re-
gression problem to minimize the weighted residual, Q−1/2ε. However, due to
the difficulty and reliability to evaluate the reduced Hessian for every di ∈ D,
Q(di) can be replaced by a constant matrix, e.g. the identity matrix or Q
evaluated at nominal value of d. To simplify discussion, in this work, we as-
sume that Q = I. Then the regression problem can be set up as discussed
next.

Let CVs c = Θŷ, where ŷ =
[
1 yT

]T
and Θ is a nu × (ny + 1) measure-

ment weight matrix, which needs to be determined. Let the entire operation
region be sampled by N points for independent variables (input, u1, · · · ,uN

and disturbance, d1, · · · ,dN). The corresponding measurement values and the
reduced gradient values are y1, · · · ,yN and g1, · · · ,gN , respectively. Then the
globally optimal CVs are determined by adjusting Θ to minimize the regres-
sion error εi = Θŷi − gi as follows:

L = min
Θ

1

2N

N∑
i=1

(Θŷi − gi)
T (Θŷi − gi)

= min
Θ

1

2N

nu∑
j=1

(Yθj − ĝj)
T (Yθj − ĝj) (13)

= min
Θ

1

2N
trace

(
(YΘT −GT )T (YΘT −GT )

)

where Y =
[
ŷ1 · · · ŷN

]T
, θT

j is the jth row of Θ and ĝT
j is the jth row of the

matrix,

G =
[
g1 · · · gN

]

Assume that N > nu. Then, the least squares solution to the problem (13) is

ΘT = (YTY)−1YTGT (14)

The corresponding loss is

L =
1

2N
trace

(
G
(
I−Y(YTY)−1YT

)
GT

)
(15)

In principle, it is possible to parametrize the CVs in terms of all the available

6



Page 8 of 20

Acc
ep

te
d 

M
an

us
cr

ip
t

measurements. Control systems with lower complexity can be obtained by us-
ing a subset of available measurements to parametrize the CVs, which often
provides similar loss as the case where CVs are chosen to be functions of all the
available measurements [Alstad et al., 2009; Kariwala, 2007; Kariwala et al.,
2008; Ye et al., 2013]. The selection of the subset of measurements is a com-
binatorial optimization problem, which makes the application of this method
difficult to large-scale processes. The BAB framework used to overcome this
difficulty is presented in the next section.

4 Branch and bound method

4.1 General principle

Let Xr = {xi|i = 1, 2, · · · , r}, be an r-element set. A subset selection problem
with the selection criterion φ involves finding the optimal solution, X∗n, such
that

φ(X∗n) = max
Xn⊂Xr

φ(Xn) (16)

For this problem, the number of alternatives is Cnr = r!
(r−n)!n! , which grows very

quickly with r and n rendering an exhaustive search unviable. A BAB approach
can provide globally optimal solution for the subset selection problem in (16)
without exhaustive search. In this approach, the original problem (node) is
divided (branched) into several non-overlapping subproblems (sub-nodes). If
any of the n-element solution of a sub-problem cannot lead to the optimal
solution, the sub-problem is not evaluated further (pruned), else it is branched
again. The pruning of sub-problems allows the BAB approach to gain efficiency
in comparison with an exhaustive search.

The available BAB methods for subset selection can be classified as down-
wards [Cao and Saha, 2005; Chen, 2003; Narendra and Fukunaga, 1977; Somol
et al., 2000; Yu and Yuan, 1993] and upwards [Cao and Kariwala, 2008; Kari-
wala and Cao, 2009; Kariwala and Y.Cao, 2010] BAB methods based on the
search direction. For the regression problem associated with globally optimal
CV selection, the downwards BAB approach is applicable and is discussed
next.

In a downwards BAB approach, each node is represented by Xs = Ff ∪ Cc,
where s = f + c and, Ff and Cc denote the fixed and candidate sets, respec-
tively. Here, the subscript denote the size of the set. The relationship between

7
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root search
direction

Fig. 1. Solution tree for selecting 2 out of 6 elements

the fixed and candidate sets of a node and its ith sub-node (branching rule) is
given as follows:

F i
fi

= Ff ∪ {x1, · · · , xi−1}; Ci
ci

= Cc \ {x1, · · · , xi} (17)

where F i
fi

and Ci
ci

denote the fixed and candidate sets of the ith sub-node and
i = 1, 2, · · · , n−f+1. An example of the solution tree obtained by recursively
applying the branching rule in (17) is shown in Figure 1. For the root node in
this solution tree, we have Ff = ∅ and Cc = Xr. The label of the nodes denote
the element being removed from Xs. The solution tree has Crn terminal nodes
(marked by grey circles), which represent different n-element subsets of Xr.

To describe the pruning principle, let X denote the ensemble of all n-element
subsets, which can be obtained using (17), i.e.

X = {Ff ∪ Cc \Xf+c−n|Xf+c−n ∈ Cc} (18)

and φ(Ff ∪Cc) be the upper bound on φ computed over all elements of X , i.e.

φ(Ff ∪ Cc) = max
Xn∈X

φ(Xn) (19)

Assume that B is a lower bound of the globally optimal criterion, i.e. B ≤
φ(X∗n). Then,

φ(Xn) < φ(X∗n)∀Xn ∈ X , if φ(Ff ∪ Cc) < B (20)

Hence, any Xn ∈ X cannot be optimal and can be pruned without further
evaluation, if φ(Ff ∪ Cc) < B.

Although pruning of nodes using (20) results in an efficient BAB algorithm,
further efficiency can be gained by performing pruning on the sub-nodes di-
rectly. This happens as the lower bounds for different sub-nodes are related

8
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and can be computed together from φ(Ff ∪ Cc) resulting in computational
efficiency. For xi ∈ Cc, the ith sub-node can be pruned if

φ(Ff ∪ Cc \ xi) < B (21)

For a BAB method involving pruning of sub-nodes, branching needs to be
carried on sub-node level as well, which requires choosing a decision element
to branch upon. Here, the decision element is selected as the element with
largest φ(Ff ∪ Cc \ xi) among all xi ∈ Cc (best-first search).

4.2 Application to CV Selection using Regression

According to (15), the globally average loss using a linear combination of
measurements can be represented as

L =
1

2N

(
trace(GGT )− trace(BTC−1B)

)
(22)

where B = (GY)T and C = YTY.

As the first term in (22) is constant, measurements can be selected by minimiz-
ing the loss, L or equivalently maximizing the second term, trace(BTC−1B).
To select a subset of n measurements as CVs, Xn from a set of r available
measurements, the criterion is:

max
Xn⊂Xr

φ(Xn) = trace(BT
Xn

C−1Xn,Xn
BXn) (23)

where BXn is a sub-matrix of B with row indices defined by Xn and CXn,Xn

represents the principal submatrix of C with rows and columns indexed by
Xn.

The use of BAB for solving the optimization problem in (23) requires an upper
bound on the selection criteria, calculated over the ensemble X in (18). This
upper bound is derived in the next proposition.

Proposition 1 (Pruning) Consider a node with fixed set Ff and candidate
set Cc. For X in (18),

φ(Ff ∪ Cc) ≥ max
Xn∈X

φ(Xn) (24)

9
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Proof : For notational simplicity, let us define S = Ff ∪ Cc. Let R and R̃ be
the Cholesky factors of CXn,Xn for some Xn ∈ X and CS,S, respectively, where
X is given in (18). As Xn ⊂ S, R is a principal submatrix of R̃, which implies
that R−1 is a principal submatrix of R̃−1. Define Z = R−TBXn . Then,

φ(Xn) = trace(BT
Xn

R−1R−TBXn) = trace(ZTZ) (25)

Similarly,

φ(S) = trace(BT
SR̃−1R̃−TBS) = trace(Z̃T Z̃) (26)

where Z̃ = R̃−TBS. Since Z̃ is a superset of Z, φ(S) ≥ φ(Xn) and (24) follows.

Proposition 1 implies that the non-optimal nodes can be pruned using φ(Ff ∪
Cc) as the upper bound. To gain further efficiency by pruning the sub-nodes
directly, we relate the selection criteria of a node with its sub-nodes in the
next proposition.

Proposition 2 (Subset pruning) Consider a node with fixed set Ff and
candidate set Cc. Let S = Ff ∪ Cc. For xi ∈ Cc, i = 1, 2, · · · , c,

φ(S \ xi) = φ(S)− α2
i /δi (27)

where

αi =
nu∑
j=1

zT
i BS,j (28)

with zT
i and δi being the ith row and (i, i)th element of C−1S,S respectively, whilst

BS,j is the jth column of BS.

Proof : To simplify notation without losing generality, we permute rows and
columns of C−1S,S such that ith row and column are the last row and column.

With this re-ordering, C−1S,S can be partitioned as

C−1S,S =

M ηi

ηT
i δi



where zT
i =

[
ηT
i δi

]
. Then,

C−1S\xi,S\xi
= M− ηiη

T
i /δi

10
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Therefore,

φ(S) = trace(BT
S\xi

MBS\xi
+ 2BT

xi
ηT
i BS\xi

+ BT
xi

Bxi
δi)

This gives

φ(S)− φ(S \ xi)
=trace(BT

S\xi
ηiη

T
i BS\xi

/δi + 2BT
xi
ηT
i BS\xi

+ BT
xi

Bxi
δi)

Define Q = ηT
i BS\xi

+ Bxi
δi = ziBS. Then,

φ(S)− φ(S \ xi) = trace(QTQ)/δi = α2
i /δi

which leads to (27).

The evaluation of (27) requires inversion of only one matrix CS,S, which is the
same for all xi ∈ Cc. Thus, the use of (27) to obtain the selection criteria for all
sub-nodes together is computationally more efficient than directly evaluating
the selection criteria for every node. In summary, the following BAB algorithm
can be used for subset selection for regression.

Algorithm 1 (BAB algorithm 1 [Cao et al., 2013]) Initialize f = 0, Ff =
∅, Cc = Xr, φ(Ff ) = 0 and B = 0. Call the following recursive algorithm:

(1) If φ(Ff ∪Cc) > B, prune the current node and return, else perform Steps
2-4.

(2) Calculate αi in (28) ∀i ∈ Cc. Prune the subsets with φ(Ff ∪Cc)−α2
i /δi <

B.
(3) If f = n or f+c = n, go to next step. Otherwise, generate the c sub-nodes

according to the branching rule in (17) and call the recursive algorithm
in Step 1 for each sub-node. Return to the caller after the execution of
the loop finishes.

(4) Find Jmax = φ(Ff ∪ Cc)−maxi∈Cc α
2
i /δi. If Jmax > B, update B = Jmax.

Return to the caller.

4.3 Improved Pruning Algorithm

The main aim of measurement selection is to simplify the control structure,
i.e. to select a measurement subset with size as small as possible. In this case,
the upper bound based on monotonicity in Proposition 1 might be very loose
if node size, s = f + c� n. To improve the efficiency, a tighter upper bound
is derived by taking the multiple variables to be discarded into account.

Consider a node with a fixed set, Ff and a candidate set, Cc. Define Xs =
Ff
⋃
Cc with s = f + c, and Xw = Xs \ Xn with w = s − n. According to

11
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matrix inversion theorem, if CXs,Xs and C−1Xs,Xs
are partitioned according to a

selection, Xn as follows.

CXs,Xs =

CXn,Xn CXn,Xw

CXw,Xn CXw,Xw



C−1Xs,Xs
=

QXn,Xn QXn,Xw

QXw,Xn QXw,Xw


then

C−1Xs,Xs
−

C−1Xn,Xn
0

0 0

 =

QXn,Xw

QXw,Xw

Q−1Xw,Xw

[
QXn,Xw QXw,Xw

]

Therefore,

φ(Xs)− φ(Xn) = trace(B̃T
Xw

Q−1Xw,Xw
B̃Xw)

where B̃Xw =
[
QXn,Xw QXw,Xw

]
BXs . Then an upper bound can be derived as

follows.

φ(Xn)≤φ(Xs)− trace(B̃XwB̃T
Xw

)λ(Q−1Xw,Xw
)

≤φ(Xs)− min
Xw∈Xs

‖B̃Xw‖2Fλ
−1

(QXw,Xw)

≤φ(Xs)− min
Xw∈Xs

‖B̃Xw‖2Fλ
−1

(C−1Xs,Xs
)

≤φ(Xs)− min
Xw∈Xs

‖B̃Xw‖2Fλ(CXs,Xs)

≤φ(Xs)− min
Xw∈Xs

‖B̃Xw‖2Fλ(C)

In the above upper bound, the minimum eigenvalue of C, λ(C) can be pre-
calculated. Therefore, an improved downward pruning procedure can be as
follows.

Algorithm 2 (BAB Algorithm 2 [Cao et al., 2013]) At each node,

(1) Evaluate B̃Xs = C−1Xs,Xs
BXs.

(2) For each xi ∈ Cc, calculate αxi
= bT

xi
bxi

, where bT
xi

is a row of B̃Xs

corresponding to xi.
(3) Rank αxi

such that, α1 ≤ α2 · · · ≤ αw and sum the lowest w values as
β =

∑w
k=1 αk.

(4) If φ(Xs)− βλ(C) < B, then this node can be pruned.

12
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The above algorithm can further be applied to sub-node pruning if the pruning
condition for the current node is not satisfied. If xi ∈ Xw is to be fixed, then,
the corresponding αxi

cannot be included in β. The (w + 1)th lowest αw+1 is
going to replace αxi

. This will increase β by δi = αw+1 − αxi
. Therefore, if

φ(Xs) − (β + δi)λ(C) < B then xi cannot be fixed. In other words, xi must
be discarded.

Furthermore, if xi ∈ Cc\Xw is discarded, then β will increase by γi = αxi
−αw.

Therefore, if φ(Xs) − (β + γi)λ(C) < B, then xi cannot be discarded, hence
has to be fixed.

5 Numerical Examples

To evaluate the efficiency of the proposed BAB algorithm for selecting globally
optimal CVs, we test the performance of BAB algorithm on random matrices
and a binary distillation column [Skogestad, 1997]. All tests are conducted
on a PC running Windows 7 SP1 with Intel Core i3-2100 3.10GHz processor,
8GB RAM using Matlab R2011a.

5.1 Random Matrices

Two full matrices are randomly generated for tests: Y ∈ RN×ny containing ny

candidate measurements with N samples for regression and G ∈ RN×nu con-
taining N samples of regression objective for a nu degrees of freedom problem.
Elements of these matrices are normally distributed with zero mean and unit
variance. Since the computation difficulty arises mainly due to the increasing
ny and n, the following two tests are conducted: In the first test, we let ny vary
from 10 to 100 while keeping n = ny − 5. In the second test, we fix ny = 40
and let n vary from 1 to 39. In both tests, average computation times and
average numbers of nodes evaluated are computed for 100 experiments with
N = 1000 and nu = 2.

The results for the first test are summarized in Figure 2, BAB algorithms 1
and 2 show superior performance over brute force method. As shown in the
figure, the required computation time and number of nodes to be evaluated for
brute force algorithm increase dramatically as ny increases. The brute force
algorithm cannot solve the problem in reasonable time when ny exceeds 35.
Note that to simplify the problem, we have restricted n = ny−5. Nevertheless,
using the proposed BAB algorithm, the problems can be efficiently solved. It
takes about 20 s to complete the task when ny = 100 for Algorithm 1 and
only 2 s for Algorithm 2. By applying the improved pruning algorithm, the

13
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computation time and number of nodes evaluated for Algorithm 2 grow only
slightly as ny increases.
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BAB Algorithm 1 BAB Algorithm 2 Brute force

Fig. 2. Random test 1: (a) computation time and (b) number of nodes evaluated
when ny varies while keeping n = ny − 5

The results for Test 2 are shown in Figure 3, which shows these problems can
also be effectively solved by applying BAB algorithms 1 and 2 when n varies
from 1 to 39, whereas a brute and force method cannot solve the problem when
6 < n < 35. It takes at most 139 s for Algorithm 1 and, 40 s for Algorithm
2 to solve any of these problems. It can also be observed that computation
times and number of nodes evaluated reach the peak when n is around 14 and
not 20, which results in the largest number of combinations. This happens
as downwards BAB is more efficient for problems where a few among many
candidate variables need to be discarded [Cao and Kariwala, 2008].

5.2 Binary Distillation Column

Next, we consider self-optimizing control of a binary distillation column with
41 trays [Jäschke, 2011]. The distillation column has 4 manipulated variables:
reflux flow rate (L), vapor boilup V , distillate flow rate (D) and bottoms flow
rate (B). The levels of top condenser and bottom reboiler need to be stabilized,
which consumes two degrees of freedom. The top composition of the product
is required to be actively controlled at 0.99. D, B and L are selected to control
the two levels and the product composition, respectively. Therefore, only one
degree of freedom V remains for optimization purpose. The objective is to

14
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Fig. 3. Random test 2: (a) computation time and (b) number of nodes evaluated
when n varies

minimize the cost function which can be equivalently formulated as

J = V − 64D (29)

where the first term V indicates the energy cost and the second term of the cost
function is the negative profit for selling the product with an assumed price
64 currency unit. The reader is referred to [Jäschke, 2011] for more detailed
description of the column.

The main disturbances are feed flow rate (F ), feed composition (zF ) and vapor
fraction of feed (qF ), which are here defined to vary between [1, 1.5], [0.5, 0.75]
and [1, 1.5], respectively. Besides the two levels and the top composition, one
additional CV needs to be identified for self-optimizing control of the column.
The combination of temperatures on 41 trays (y1, . . . , y41, counting from bot-
tom to top), which are measured with an accuracy of ±0.5◦C, are considered
as CV for implementation of self-optimizing control strategy.

Data samples for NCO regression are generated as follows: each independent
variable is sampled with 6 points within appropriate ranges. The variation
range for disturbances are defined earlier, whilst variation range for vapor
boilup V is bounded within (3.4, 5.2). For each scenario, temperatures at each
tray are calculated and the NCO component JV , which refer to the gradient
of J with respect to V , is also obtained using finite difference method. There-
fore, 64 = 1296 samples are collected for regression. Because the number of
candidate measurements for regression is large, we apply BAB algorithm 2 to
implement globally optimal CV selection and the results are summarized in
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Fig. 4. BAB performance for the column case study: (a) regression SSE; (b) com-
putation time; (c) Evaluations

Table 1
Average losses for global and local approaches with best subset measurements

n
Global approach Local approach

Best subset Average loss Best subset Average loss

1 [T12] 0.0232 [T9] 0.0338

2 [T14, T23] 0.0018 [T12, T21] 0.0056

3 [T13, T21, T29] 0.0015 [T11, T12, T21] 0.0048

4 [T12, T13, T21, T31] 0.000599 [T10, T11, T12, T21] 0.0043

5 [T12, T13, T21, T22, T36] 0.000606 [T10, T11, T12, T13, T21] 0.0047

6 [T12, T13, T15, T21, T22, T36] 0.000115 [T10, T11, T12, T13, T21, T22] 0.0047

Figure 4.

Figure 4 (a) shows that when n > 6, the SSE can only be slightly reduced
as n increases. Therefore, using full set of measurements as predictors for the
gradient JV is not necessary and a trade-off between economics and the number
of measurements can be made. Figure 4 (b) and (c) show the computation
time and number of node evaluations and demonstrate the usefulness and
effectiveness of proposed BAB algorithm. Brute force cannot handle such a
large problem, whereas proposed BAB algorithm solves it successfully. It takes
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Fig. 5. Trends of average loss through nonlinear model validation against the number
of measurements with n varying from 1 to 6

about 731 s to complete all the selection tasks, which is acceptable for off-line
computing. Largest computation time occurs at n = 11, which takes about 80
s. Overall, Figure 4 can be used as a guide for selecting appropriate number
of measurements to be used for self-optimizing control. Therefore, proposed
algorithm is practically appealing, because the algorithm makes it possible to
reduce the overall operation cost and meanwhile, reduces the investment for
hardware sensors, (e.g. temperature sensors for the column).

To compare the actual self-optimizing performances, the CVs with best mea-
surement subsets for n varying from 1 to 6 are tested through nonlinear model
validations. A Monte Carlo experiment with 100 sets of randomly generated
disturbances within their allowable ranges is carried out. The local approach
with average loss criterion [Kariwala et al., 2008] is also applied, where the
locally optimal subset is found using PB3 algorithm [Cao and Kariwala, 2009].
The results of average losses are summarized in Table 1 and the trends of av-
erage loss against the number of measurements are shown in Figure 5. It can
be seen that the global approach performs much better than local approach.
For local approach, there is no significant improvement of economic loss by
increasing n when n > 3. For global approach, even with only 2 measurements,
the performance is still much better than local approach with 6-subset mea-
surements. In summary, with the use of proposed BAB algorithm, the best
subset measurements can be identified to find CVs with global self-optimizing
performances efficiently.

6 Conclusions

In the context of self-optimizing control, a novel branch and bound (BAB)
algorithm is proposed for efficiently selecting globally optimal controlled vari-
ables (CVs) as a function of the subset of available measurements. The BAB
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algorithm identifies the best measurement subset such that the sums of squares
of errors between the selected CVs and necessary conditions of optimality is
minimized. Numerical tests using randomly generated matrices and a practical
binary distillation column case study show the efficiency and effectiveness of
the proposed algorithm. For distillation column case, the self-optimizing per-
formance of regression approach is also compared with local SOC approach
where the PB3 algorithm is used for best subset selection. Results show that
using global approach combined with proposed BAB algorithm, not only is the
loss reduced, the required number of measurements to achieve self-optimizing
properties is also decreased, which makes the control system simpler with
reduced hardware investment.

It is also pointed out that the proposed algorithm is applicable to the general
linear regression problem as well as other statistical problems. The proposed
downwards algorithm is most efficient for problems where a few from many
candidate variables need to be discarded. In this paper, an improved algorithm
is presented for problems where a few variables need to be selected from many
candidate variables. To further reduce the incurred computational expense,
the use of upwards and bidirectional BAB algorithms is promising and will be
explored in future.
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