913,811 research outputs found

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    Random Rectangular Graphs

    Get PDF
    A generalization of the random geometric graph (RGG) model is proposed by considering a set of points uniformly and independently distributed on a rectangle of unit area instead of on a unit square [0,1]^2. The topological properties of the random rectangular graphs (RRGs) generated by this model are then studied as a function of the rectangle sides lengths a and b=1/a, and the radius r used to connect the nodes. When a=1 we recover the RGG, and when a-->infinity the very elongated rectangle generated resembles a one-dimensional RGG. We obtain here analytical expressions for the average degree, degree distribution, connectivity, average path length and clustering coefficient for RRG. These results provide evidence that show that most of these properties depend on the connection radius and the side length of the rectangle, usually in a monotonic way. The clustering coefficient, however, increases when the square is transformed into a slightly elongated rectangle, and after this maximum it decays with the increase of the elongation of the rectangle. We support all our findings by computational simulations that show the goodness of the theoretical models proposed for RRGs.Comment: 23 pages, 8 figure

    Filling polygonal holes with bicubic patches

    Get PDF
    Consider a bicubic rectangular patch complex which surrounds an n-sided hole in R3. Then the problem of filling the hole with n bicubic rectangular patches is studied

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Regularization by free additive convolution, square and rectangular cases

    Get PDF
    The free convolution is the binary operation on the set of probability measures on the real line which allows to deduce, from the individual spectral distributions, the spectral distribution of a sum of independent unitarily invariant square random matrices or of a sum of free operators in a non commutative probability space. In the same way, the rectangular free convolution allows to deduce, from the individual singular distributions, the singular distribution of a sum of independent unitarily invariant rectangular random matrices. In this paper, we consider the regularization properties of these free convolutions on the whole real line. More specifically, we try to find continuous semigroups (μt)(\mu_t) of probability measures such that μ0\mu_0 is the Dirac mass at zero and such that for all positive tt and all probability measure ν\nu, the free convolution of μt\mu_t with ν\nu (or, in the rectangular context, the rectangular free convolution of μt\mu_t with ν\nu) is absolutely continuous with respect to the Lebesgue measure, with a positive analytic density on the whole real line. In the square case, we prove that in semigroups satisfying this property, no measure can have a finite second moment, and we give a sufficient condition on semigroups to satisfy this property, with examples. In the rectangular case, we prove that in most cases, for μ\mu in a continuous rectangular-convolution-semigroup, the rectangular convolution of μ\mu with ν\nu either has an atom at the origin or doesn't put any mass in a neighborhood of the origin, thus the expected property does not hold. However, we give sufficient conditions for analyticity of the density of the rectangular convolution of μ\mu with ν\nu except on a negligible set of points, as well as existence and continuity of a density everywhere.Comment: 43 pages, to appear in Complex Analysis and Operator Theor
    corecore