7,586 research outputs found

    A yeast three-hybrid system that reconstitutes mammalian hypoxia inducible factor regulatory machinery

    Get PDF
    Background: Several human pathologies, including neoplasia and ischemic cardiovascular diseases, course with an unbalance between oxygen supply and demand ( hypoxia). Cells within hypoxic regions respond with the induction of a specific genetic program, under the control of the Hypoxia Inducible Factor (HIF), that mediates their adaptation to the lack of oxygen. The activity of HIF is mainly regulated by the EGL-nine homolog (EGLN) enzymes that hydroxylate the alpha subunit of this transcription factor in an oxygen-dependent reaction. Hydroxylated HIF is then recognized and ubiquitinilated by the product of the tumor suppressor gene, pVHL, leading to its proteosomal degradation. Under hypoxia, the hydroxylation of HIF by the EGLNs is compromised due to the lack of oxygen, which is a reaction cosubstrate. Thus, HIF escapes degradation and drives the transcription of its target genes. Since the progression of the aforementioned pathologies might be influenced by activation of HIF-target genes, development of small molecules with the ability to interfere with the HIF-regulatory machinery is of great interest.Results: Herein we describe a yeast three-hybrid system that reconstitutes mammalian HIF regulation by the EGLNs and VHL. In this system, yeast growth, under specific nutrient restrictions, is driven by the interaction between the beta domain of VHL and a hydroxyproline-containing HIF alpha peptide. In turn, this interaction is strictly dependent on EGLN activity that hydroxylates the HIFa peptide. Importantly, this system accurately preserves the specificity of the hydroxylation reaction toward specific substrates. We propose that this system, in combination with a matched control, can be used as a simple and inexpensive assay to identify molecules that specifically modulate EGLN activity. As a proof of principle we show that two known EGLN inhibitors, dimethyloxaloylglycine (DMOG) and 6-chlor-3-hydroxychinolin-2-carbonic acid-N-carboxymethylamide (S956711), have a profound and specific effect on the yeast HIF/EGLN/VHL system.Conclusion: The system described in this work accurately reconstitutes HIF regulation while preserving EGLN substrate specificity. Thus, it is a valuable tool to study HIF regulation, and particularly EGLN biochemistry, in a cellular context. In addition, we demonstrate that this system can be used to identify specific inhibitors of the EGLN enzymes

    Micrococcal Nuclease Does Not Substantially Bias Nucleosome Mapping

    Get PDF
    We have mapped sequence-directed nucleosome positioning on genomic DNA molecules using high-throughput sequencing. Chromatins, prepared by reconstitution with either chicken or frog histones, were separately digested to mononucleosomes using either micrococcal nuclease (MNase) or caspase-activated DNase (CAD). Both enzymes preferentially cleave internucleosomal (linker) DNA, although they do so by markedly different mechanisms. MNase has hitherto been very widely used to map nucleosomes, although concerns have been raised over its potential to introduce bias. Having identified the locations and quantified the strength of both the chicken or frog histone octamer binding sites on each DNA, the results obtained with the two enzymes were compared using a variety of criteria. Both enzymes displayed sequence specificity in their preferred cleavage sites, although the nature of this selectivity was distinct for the two enzymes. In addition, nucleosomes produced by CAD nuclease are 8–10 bp longer than those produced with MNase, with the CAD cleavage sites tending to be 4–5 bp further out from the nucleosomal dyad than the corresponding MNase cleavage sites. Despite these notable differences in cleavage behaviour, the two nucleases identified essentially equivalent patterns of nucleosome positioning sites on each of the DNAs tested, an observation that was independent of the histone type. These results indicate that biases in nucleosome positioning data collected using MNase are, under our conditions, not significant

    A comparison of in vitro nucleosome positioning mapped with chicken, frog and a variety of yeast core histones

    Get PDF
    AbstractUsing high-throughput sequencing, we have mapped sequence-directed nucleosome positioning in vitro on four plasmid DNAs containing DNA fragments derived from the genomes of sheep, drosophila, human and yeast. Chromatins were prepared by reconstitution using chicken, frog and yeast core histones. We also assembled yeast chromatin in which histone H3 was replaced by the centromere-specific histone variant, Cse4. The positions occupied by recombinant frog and native chicken histones were found to be very similar. In contrast, nucleosomes containing the canonical yeast octamer or, in particular, the Cse4 octamer were assembled at distinct populations of locations, a property that was more apparent on particular genomic DNA fragments. The factors that may contribute to this variation in nucleosome positioning and the implications of the behavior are discussed

    Prigogine and Pannenberg: Theological and Scientific Perspectives on Contingency and Irreversibility

    Full text link
    The author demonstrates how Nobel Laureate Ilya Prigogine\'s pioneering work on dissipative structures and non-equilibrium thermodynamics might be used to answer theological questions about contingency and irreversibility that theologian Wolfhart Pannenberg posed to scientists twenty years ago. Prigogine \'s reformulation of classical dynamics and his mathematical model of irreversibility seem to corroborate Pannenberg \'s claim that natural phenomena must be both contingent and irreversible, if the Christian worldview is correct. The writings of Prigogine and Pannenberg provide an interesting example of the methodological difficulties encountered when comparing scientific and theological worldviews

    Prigogine and Pannenberg: Theological and Scientific Perspectives on Contingency and Irreversibility

    Full text link
    The author demonstrates how Nobel Laureate Ilya Prigogine\'s pioneering work on dissipative structures and non-equilibrium thermodynamics might be used to answer theological questions about contingency and irreversibility that theologian Wolfhart Pannenberg posed to scientists twenty years ago. Prigogine \'s reformulation of classical dynamics and his mathematical model of irreversibility seem to corroborate Pannenberg \'s claim that natural phenomena must be both contingent and irreversible, if the Christian worldview is correct. The writings of Prigogine and Pannenberg provide an interesting example of the methodological difficulties encountered when comparing scientific and theological worldviews
    • 

    corecore