60,295 research outputs found
Web based Recommender Systems and Rating Prediction
This project implements a recommender system on large dataset of Netflix’s movies. This project also tries to improve recommender systems by incorporating confidence interval and genres of movies. This new approach enhances the performance and quality of service of recommender systems and gives better result than Netflix commercial recommender system, Cinematch
Outfit Recommender System
The online apparel retail market size in the United States is worth about seventy-two billion US dollars. Recommendation systems on retail websites generate a lot of this revenue. Thus, improving recommendation systems can increase their revenue. Traditional recommendations for clothes consisted of lexical methods. However, visual-based recommendations have gained popularity over the past few years. This involves processing a multitude of images using different image processing techniques. In order to handle such a vast quantity of images, deep neural networks have been used extensively. With the help of fast Graphics Processing Units, these networks provide results which are extremely accurate, within a small amount of time. However, there are still ways in which recommendations for clothes can be improved. We propose an event-based clothing recommendation system which uses object detection. We train a model to identify nine events/scenarios that a user might attend: White Wedding, Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, Graduation and Workout. We train another model to detect clothes out of fifty-three categories of clothes worn at the event. Object detection gives a mAP of 84.01. Nearest neighbors of the clothes detected are recommended to the user
Opening the Black Box: Explaining the Process of Basing a Health Recommender System on the I-Change Behavioral Change Model
Recommender systems are gaining traction in healthcare because they can tailor recommendations
based on users' feedback concerning their appreciation of previous health-related messages. However,
recommender systems are often not grounded in behavioral change theories, which may further increase
the effectiveness of their recommendations. This paper's objective is to describe principles for designing
and developing a health recommender system grounded in the I-Change behavioral change model that
shall be implemented through a mobile app for a smoking cessation support clinical trial. We built upon
an existing smoking cessation health recommender system that delivered motivational messages through a
mobile app. A group of experts assessed how the system may be improved to address the behavioral change
determinants of the I-Change behavioral change model. The resulting system features a hybrid recommender
algorithm for computer tailoring smoking cessation messages. A total of 331 different motivational messages
were designed using 10 health communication methods. The algorithm was designed to match 58 message
characteristics to each user pro le by following the principles of the I-Change model and maintaining the
bene ts of the recommender system algorithms. The mobile app resulted in a streamlined version that aimed
to improve the user experience, and this system's design bridges the gap between health recommender
systems and the use of behavioral change theories. This article presents a novel approach integrating
recommender system technology, health behavior technology, and computer-tailored technology. Future
researchers will be able to build upon the principles applied in this case study.European Union's Horizon 2020 Research and Innovation Programme under Grant 68112
Recommended from our members
Generic system architecture for context-aware, distributed recommendation
In the existing literature on recommender systems, it is difficult to find an architecture for large-scale implementation. Often, the architectures proposed in papers are specific to an algorithm implementation or a domain. Thus, there is no clear architectural starting point for a new recommender system. This paper presents an architecture blueprint for a context-aware recommender system that provides scalability, availability, and security for its users. The architecture also contributes the dynamic ability to switch between single-device (offline), client-server (online), and fully distributed implementations. From this blueprint, a new recommender system could be built with minimal design and implementation effort regardless of the application.Electrical and Computer Engineerin
Exploiting synergy between ontologies and recommender systems
Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations.Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain.
This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured
- …
