

Copyright

by

Neel Harish Shah

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211337456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 The Report Committee for Neel Harish Shah
 Certifies that this is the approved version of the following report:

 Generic System Architecture for Context-Aware, Distributed
Recommendation

APPROVED BY
SUPERVISING COMMITTEE:

Christine Julien

Suzanne Barber

Supervisor:

Generic System Architecture for Context-Aware, Distributed
Recommendation

by

Neel Harish Shah, B.S.E.E.

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
December 2016

 Dedication

This work is dedicated to my friends and family who have always given me hope and

supported me throughout this voyage.

 v

Acknowledgements

This work would not have been possible without the copious support of my

parents, Harish and Rita. Also, I would like to thank my classmates Sonia Marginean and

Asim Saleem for encouraging me to pursue my ideas.

 vi

Abstract

Generic System Architecture for Context-Aware, Distributed
Recommendation

Neel Harish Shah, M.S.E.

The University of Texas at Austin, 2016

Supervisor: Christine Julien

In the existing literature on recommender systems, it is difficult to find an

architecture for large-scale implementation. Often, the architectures proposed in papers

are specific to an algorithm implementation or a domain. Thus, there is no clear

architectural starting point for a new recommender system. This paper presents an

architecture blueprint for a context-aware recommender system that provides scalability,

availability, and security for its users. The architecture also contributes the dynamic

ability to switch between single-device (offline), client-server (online), and fully

distributed implementations. From this blueprint, a new recommender system could be

built with minimal design and implementation effort regardless of the application.

 vii

Table of Contents

List of Tables ... viii	

List of Figures .. ix	

INTRODUCTION ...1

LITERATURE REVIEW ..4	

APPROACH ...6	
Overview ...6	
Contributions ..8	

Anonymous User Profile..8	
Group Profile ...8	
Availability ..9	

IMPLEMENTATION ...11	

ANALYSIS ...12	
Scalability ...12	
Security ...13	
Availability ...16	

FUTURE WORK ...19	

CONCLUSION ..20	

Appendix ..21	

References ..28	

Vita ..30	

 viii

List of Tables

Table 1:	 Architecture Component Overview ..7	

 ix

List of Figures

Figure 1:	 Component Organization and Communication Paths7

Figure 2:	 User Group Initialization Performance ...13	

Figure 3:	 User Profile Security Tests ..15	

Figure 4:	 Profile Server Availability Test ...17	

Figure 5:	 Session Server Availability Test ...18	

Figure 6:	 User Profile Subsets ..22

 1

INTRODUCTION

As Web 2.0 technology matures, recommendations are becoming a highly valued

feature for websites and applications. This has driven interest in researching

recommendation algorithms and methodologies of varying complexities and domain-

specific optimizations. In general, recommender systems have two first-class entities:

users and items. Recommender systems generally utilize user preferences and item

relationships to provide recommendations.

Context-aware recommender systems, which allow recommender systems to use

other applicable information besides user preferences to make recommendations, have

become increasingly relevant to the area. This is because it has been shown, in many

domains, that it is not sufficient to rely only on the users and items in the system to make

accurate recommendations; the context in which a user takes an action toward an item is

directly relevant to how another user might behave in a similar context [1]. For example,

a user’s interests might be affected by the current date, season, or temperature. Thus, it is

important to capture these data when a user records their preferences so that

recommendations to other users in a similar context are improved.

Although context-awareness leads to better recommendations, it introduces

several issues. Managing context information increases the size of the data managed by

the system, creating a larger workload and emphasizing the need for a scalable

recommender system. Portability of a mobile recommender system could be affected due

to the unreliable nature of context information. Context information also poses a new

security problem because of the additional sensitive data now managed by the system [2].

 2

The primary requirement of a recommender system is two-fold: to understand the

preferences of users for items, and to use these preferences to make recommendations for

items to other users of the system [3]. But as research and practical use cases for

recommender systems mature, it is clear that there are secondary requirements regarding

scalability, availability and security.

Scalability is an issue to be tackled with any system that experiences workload

growth. For recommender systems, this generally means an increase in the number of

users. Obviously, large-scale recommender system architectures have been designed,

deployed and are in use today. Companies like Amazon, TiVo, and others employ these

systems to make recommendations to their users [4]. Moreover, the algorithms

implemented in these architectures are rather complex due to domain-specific

optimizations and deal with an enormous amount of data.

Another aspect of scale for recommender systems is portability: providing

recommendations to users that are on a mobile device. Portable recommendations have

become relevant only in the last decade, due to the rapidly increasing number of

smartphone users [5].

Portable recommender systems have risen to the challenge but pose new problems

due to the transient and unpredictable nature of smartphone devices. Additionally, mobile

devices emphasize recommendation practices that were not prevalent before, such as

context-awareness. Location and device type are good examples of contextual

information that is useful when providing recommendations, and there are plenty more.

There are two main security issues with recommender systems: the privacy of

personal information and reliability of recommendations [6]. A recommender system can

only function if its users are willing to provide the system with their preferences. This

information is considered sensitive by the user and should be protected by the system and

 3

not used maliciously. Ideally, the users would trust the system to provide them with

reliable recommendations. This means the parts of the system that could alter the data

used for recommendations need to be secured.

When designing a large-scale software system as a solution to a problem,

software engineering best practices dictate considering requirements and developing a

reusable, component-based architecture driven by those requirements before

implementation [7]. In many cases, an architecture can itself be reused if it is generic

enough. The goal of this paper is to propose an architecture blueprint for a context-aware

recommender system that has features desired in large-scale implementation.

 4

LITERATURE REVIEW

There have been several architectures proposed for distributed recommender

systems. In general, the proposals are limited in their features and are not suited for large-

scale implementations. There are a few noted exceptions, and this paper builds on those

ideas.

Adomavicius and Tuzhilin discuss the definition and nature of context

information in Context-Aware Recommender Systems (CARS) as well as paradigms for

using the information for making recommendations [1]. They mention a scalability issue

with the dimensionality of the context information but do not discuss storage approaches.

Roberts et al. consider context-awareness for recommendations when deriving a system

architecture and go into implementation details of data structures for geographic context

and associated storage mechanisms, but only for a single-server architecture [5]. This

paper will describe the architectural requirements to support distributed context-

awareness but does not explore details of context utilization.

In terms of generic approaches, there are various client/server proposals such as

the single server architecture proposed by Castagnos and Boyer [8]. In this paper, they

propose a hybrid recommendation algorithm that addresses privacy concerns and is

implemented on the client/server architecture by keeping sensitive information client side

and anonymizing any server side information. A similar approach, called HyRec, is taken

by Boutet et al. and shifts computational expense to the client in the name of cost [9]. The

two approaches are similar but focus on different goals. However, both ignore certain

scalability issues such as node failure and load balancing.

Castagnos and Boyer later addressed scalability issues by adopting a P2P

architecture for a decentralized algorithm [10]. They claim to maintain privacy by

 5

disassociating user identity through a unique ID, but do not discuss the generation of this

ID. Further, they mention identification of malicious users but do not elaborate on that

process. They do concede that the decentralized architecture requires more network

traffic and reference the PocketLens paper as a source for alternative P2P architectures to

reduce this traffic. In this popular paper, Miller et al. consider multiple architectures

(centralized and decentralized) on which to implement the PocketLens algorithm [6]. The

goal of the personal recommender algorithm implementation was portability and trust for

users of the system, which they show can be achieved in a variety of architectures with

varying performance and scalability. Of the architectures discussed, each was shown to

either have potential security flaws or significant degradation in performance.

A common theme for distributed recommender systems is the security of the

sensitive data in the system, particularly if it comes directly from a user. There are

algorithmic approaches such as the obfuscation technique Boutet et al. created in [11]

which produces a tradeoff between privacy and accuracy. This tradeoff is also shown by

Castagnos and Boyer in [8] to a lesser degree when clustering user profiles. There are

also more architectural approaches such as the three-layer anonymity model called

FreeRec described by Boutet et al. in [12], though this approach did only consider one

type of attack. This paper takes an architectural approach to address security and

elaborates on components proposed by Castagnos and Boyer in [8] and [10].

In summary, the current literature provides architectures that each focus on a

subset of the requirements for a large-scale recommender system. This paper proposes a

distributed architecture that accounts for node failure and load balancing. In addition, the

architecture adds a layer of security to enable operation in three different modes: online

(client-server), distributed, and offline.

 6

APPROACH

This section provides an overview of the proposed architecture and highlights the

contributions in this paper to the area. Table 1 explains the four main components: the

Context Sensor, the Recommender, the Session Server, and the Profile Server. Figure 1

depicts the organization and communication paths of these components.

Overview

Though this section discusses the logical layer of the architecture, it is necessary

to define two component zones that illustrate the mobile nature of the physical

deployment layer. The two zones are the Transient Zone and the Static Zone. The

Transient Zone contains components that will be deployed on a set of transient nodes: a

set of mobile, heterogeneous, and impermanent nodes. In the Static Zone, components

will be deployed on a set of static nodes: a set of immobile, relatively homogenous, and

permanent nodes.

In general, the Transient Zone can be thought of as containing mobile devices

such as phones, tablets and IoT sensors with little resources. Conversely, the Static Zone

contains machines with more resources. Since the components in the Static Zone function

as servers, the Client/Server organization is emphasized. This is made more apparent in

Figure 1. Also in Figure 1, it is shown that Recommender components can talk to each

other, which illustrates the distributed property of the Transient Zone. The full nature of

this behavior is discussed in the next section but this communication is still possible

when connections to the Static Zone are closed. Those connections are managed by

Session Server components; this paper entertains the case where no Profile Servers are

available or no Session Servers are available. For a full description of all components,

please see the Appendix.

 7

Component Zone Data Function

Context
Sensor

Transient Context Manages Context information
used to build Profiles and request

Recommendations

Recommender Transient User Profile, Group Profile,
Recommendations,

Subscriber List

Manages Profiles and provides
Recommendations to the user

Session
Server

Static Sessions Manages Session state between
the Transient and Static Zone

Profile Server Static Anonymous User Profiles Manages Anonymous User
Profiles

Table 1: Architecture Component Overview

Figure 1: Component Organization and Communication Paths

 8

Contributions

ANONYMOUS USER PROFILE

User Profiles, which are simply a collection of Preferences a User has for Items in

the system, can leave the user’s device to be served to other users in the client/server

architecture. In order to provide privacy to the user, that data must be secured in some

way. The most efficient family of methods alters the data so that it is not traceable back

to an individual user. Castagnos and Boyer adopted user modeling as an approach for

serving secure User Profile data from the server [10]. Their approach clustered similar

users together to build typical User Profiles. Security can also be achieved by obfuscating

the data in other ways, for example, by adding noise to the profiles [13]. For the purposes

of this paper, this process is abstracted and the resulting data is named an Anonymous

User Profile.

A User of this recommender system can be asked to categorize their Preferences

into three different categories: Public, Private, or Protected. Public information can be

accessible to everybody, even entities outside of the recommender system. Private

information cannot be accessible to anybody other than the owner of that information,

even inside of the recommender system. Protected information can be accessible to

everybody, but must not be traceable back to the user. Hence, the Protected User Profile

subset is used to generate the Anonymous User Profiles kept on the servers. Note that the

Protected User Profile includes the Public User Profile. For a full description of the

relationship between the categories, please see the Appendix.

GROUP PROFILES

Group Profiles were proposed by Castagnos and Boyer and represent “a virtual

community of interests” distributed across the peers in their system [8]. They proposed to

 9

build Group Profiles based on the Public User Profiles of a user’s peers performing above

a threshold on a similarity metric. These Group Profiles would then be updated when

each Public User Profile was changed. This paper extends the membership of Group

Profiles to include Anonymous User Profiles as well as Public User Profiles. This enables

the system to perform reasonably well when components in the Static Zone are

unavailable. In effect, the system can switch from a client/server implementation to a

fully distributed implementation since it now has access to information in other

components in the Transient Zone similar to what it was getting from the servers in the

Static Zone.

It is worth noting that the Public User Profiles present in a User’s Group Profile

have already been deemed similar enough to the User and can be considered good

sources for Anonymous User Profiles similar to the current User Profile. However, there

may be performance degradation in terms of the accuracy of recommendations since not

all Anonymous User Profiles will be available. In particular, there is no guarantee that the

best Anonymous User Profile based on the Context may not be available.

AVAILABILITY

As shown in previous work, a recommender system can function in a client-server

architecture or in a completely distributed architecture. The proposed architecture offers a

marriage of both. If all components are available, recommenders can maintain a Group

Profile using a Group Profile Algorithm (Appendix A) that requests Profiles from other

Recommenders and Profile Servers (via a Session Server). If Profile Servers become

unavailable, the Session Servers can redirect Recommenders to other Profile Servers. If a

Session Server cannot provide a Profile Server or it goes down itself, there may be other

Session Servers to serve the Recommenders. Alternatively, the Recommenders can

 10

continue asking other Recommenders for Profiles (Recommenders can provide

Anonymous Profiles from their Group Profile if needed). In this state, the system is

completely distributed. On the other hand, if there are no other Recommenders available

to ask for Profiles, a Recommender can rely on the Session and Profile Servers for

updated information. If no other components are available, the Recommender can fall

back to the Group Profile it is maintaining. In the worst case, the Recommender has

never built a Group Profile, which might force an Item-Item Recommendation Algorithm

(Appendix A) to be used.

 11

IMPLEMENTATION

The implementation was created as a Proof of Concept (POC) and serves as a

mechanism to test the architecture design for key features like scalability, privacy and

availability. The Scala language was chosen due to the succinctness of syntax and clarity

attainable for feature driven testing [14]. This resulted in fewer lines of code for the base

implementation and expressiveness of features when writing programmatic test cases.

The Akka message passing framework as written in the Scala language was

chosen to implement the POC. Message passing allows implementation of a client-server

interaction without restriction to that type of interaction. In addition, the Akka framework

provides an abstraction for components called Actors [15]. The Actors’ capabilities mesh

well with the behaviors of components as designed in this paper. The framework also

allows monitoring of Actors in the system, enabling the availability feature of the

proposed architecture.

Due to a message-passing framework being chosen, serializable data structures

were used to facilitate a quicker implementation. In the Scala language, the case class

concept allows for easy creation of serializable data structures. However, due to several

layers of abstraction and restrictions of the language, case classes were not used

everywhere. Therefore, some of the complex structures like Profiles had to be modeled as

map structures [16].

In order for the system to be programmatically tested, some of the algorithms

required for the system were given simple implementations. These should not be used for

real implementations of such a system and their performance is not indicative of the

performance of alternate algorithms at scale.

 12

ANALYSIS

The analysis of the implementation focused on scalability, security, and

availability of the architecture. All testing was done on a single physical machine with 4

logical cores and 16 gigabytes of memory. The datasets used for scalability tests were

randomly generated Users and Preferences and the other functional tests were smaller,

reproducible datasets.

Scalability

A recommender system’s performance should scale with the number of Users in

the system. Since the Recommendation Algorithm was not implemented practically, it

cannot be used to judge the performance of the system. From an architectural perspective,

since the Recommendation Algorithm is supposed to run on a single component (the

Recommender), we can claim that the architecture does not inherently affect the

performance of the Recommendation Algorithm, but rather the physical specification of

the device on which the Recommender is deployed.

What we can measure is how long it takes to form a group of a certain number of

Users. This is simply the amount of time it takes Recommenders to initialize (gathering

Profiles from other Recommenders and Profile Servers in their group). Since the current

implementation pushes every update to any Profile to all subscribers (components that

have that Profile in their Group Profile), there is a natural polynomial trend as shown in

Figure 2. These measurements could help identify a threshold of concurrent Users within

a User Group.

 13

Figure 2: User Group Initialization Performance

Security

There are two requirements of the system for security of user information: privacy

and reliability. The proposed architecture does its best to address these requirements

directly without relying on underlying algorithms. Of course, security algorithms relating

to encryption, gossip, and obfuscation can be applied to the final implementation to

address any additional requirements.

From the perspective of privacy, Public User Profiles have no security constraints

on them and are the only part of the Profile exposed by a Recommender to another

Recommender. Protected User Profiles are only exposed to Profile Servers through a

Session granted by a Session Server. The Session Servers manage the Profile Server

balancing and so are aware of only legitimate Profile Servers. The scenario tests in Figure

 14

3 show that the User Profile implementation is able to provide appropriate subsets of the

Profile. Note that the APIs used in the tests would be inaccessible to external Actors.

Even though the Protected User Profile is sent without any indication of which

User it belongs to, an adversary who is posing as a Session Server might still be able to

get access to it. This issue is handled by initializing a Recommender with references to

trusted Session Servers. Finally, Private User Profiles never leave the Recommender that

owns the Profile. This behavior is ensured by the Recommender implementation.

From a reliability standpoint, an adversary posing as a Recommender could also

fool the Profile Servers. The false Recommender could inject Preferences into the

Anonymous User Profile managed by the Profile Server. This is difficult to prevent but

the effect is mitigated since there are many Profile Servers and the Preferences are

weighted and merged with others in the Anonymous User Profiles. Additionally, the

Recommendation that the system makes is not solely based on Anonymous User Profiles

but also other User Profiles in the Group Profile, reducing the effect of a malicious

Profile further.

feature("User profile should filter preferences based on privacy level") {
scenario("Asking for private data should return all data") {
 Given("a user profile")

 val preferences: ItemPreferences = mutable.Map(
 (Item(getTestID), None) -> Preference("5"),
 (Item(getTestID), None) -> Preference("4", PROTECTED),
 (Item(getTestID), None) -> Preference("3", PROTECTED),
 (Item(getTestID), None) -> Preference("2", PUBLIC),
 (Item(getTestID), None) -> Preference("1", PUBLIC)
)

 val userProfile = UserProfile(User(getTestID), preferences)

 When("asking for private data")

 val filteredPreferences = userProfile.privateCopy

Figure 3: User Profile Security Tests

 15

 Then("the profile should contain the same preferences")

 assert(filteredPreferences.profile.equals(preferences))
}
scenario("Asking for protected data should return protected and public data") {

 Given("a user profile")

 val protectedPreferences: ItemPreferences = mutable.Map(
 (Item(getTestID), None) -> Preference("4", PROTECTED),
 (Item(getTestID), None) -> Preference("3", PROTECTED),
 (Item(getTestID), None) -> Preference("2", PUBLIC),
 (Item(getTestID), None) -> Preference("1", PUBLIC)
)
 val preferences: ItemPreferences = mutable.Map(
 (Item(getTestID), None) -> Preference("5")
)

 val userProfile = UserProfile(User(getTestID), protectedPreferences ++ preferences)

 When("asking for private data")

 val filteredPreferences = userProfile.protectedCopy

 Then("the profile should contain only the protected preferences")

 assert(filteredPreferences.profile.equals(protectedPreferences))
}

scenario("Asking for public data should return only public data") {

 Given("a user profile")

 val publicPreferences: ItemPreferences = mutable.Map(
 (Item(getTestID), None) -> Preference("2", PUBLIC),
 (Item(getTestID), None) -> Preference("1", PUBLIC)
)
 val preferences: ItemPreferences = mutable.Map(
 (Item(getTestID), None) -> Preference("5"),
 (Item(getTestID), None) -> Preference("4", PROTECTED),
 (Item(getTestID), None) -> Preference("3", PROTECTED)
)

 val userProfile = UserProfile(User(getTestID), publicPreferences ++ preferences)

 When("asking for private data")
 val filteredPreferences = userProfile.publicCopy

 Then("the profile should contain only the protected preferences")
 assert(filteredPreferences.profile.equals(publicPreferences))
}

}

Figure 3, cont.

 16

Availability

For availability, the proposed system offers a capability to switch between offline,

client-server and fully distributed operations. In order to test this fully, components in the

system had to be taken out at runtime. The first availability test suite, shown in Figure 4,

made sure Session Server components function appropriately if Profile Servers

unexpectedly went down. This means the Session Server remained stable (all Session

requests were handled) and the Profile Server was not introduced to any Recommenders

that requested a Session after the Profile Server went down.

The second availability test suite, shown in Figure 5, ensured that Recommenders

function appropriately when Session Servers unexpectedly went down. This means the

Recommender remained stable (all Recommendation requests were handled).

Additionally, a system initialized with only Recommenders and Context Sensors should

remain stable.

feature("Session servers should function if profile servers die") {
scenario("A single profile server dies") {
 Given("a session server managing two profile servers")

 val testContext = Some(Context("testContext"))
 val profileServer = TestActorRef(new ProfileServer(testContext))
 val profileServer2 = TestActorRef(new ProfileServer())
 val sessionServer = TestActorRef(new SessionServer(mutable.Map(
 testContext -> mutable.Set(profileServer),
 None -> mutable.Set(profileServer2)
)))

 When("one profile server is shut down")

 profileServer ! PoisonPill

 And("we ask for a session for what would have been its context")

 val future = sessionServer ? SessionRequest(testContext)
 val future2 = sessionServer ? SessionRequest()

 Then("it should not be returned")

Figure 4: Profile Server Availability Test

 17

 val Success(session: Session) = future.value.get
 val Success(session2: Session) = future2.value.get

 session.actorRef shouldEqual None
 session2.actorRef shouldEqual Some(profileServer2)

}

scenario("No profile servers left should not be a problem") {
 Given("a session server managing two profile servers")

 val testContext = Some(Context("testContext"))
 val profileServer = TestActorRef(new ProfileServer(testContext))
 val profileServer2 = TestActorRef(new ProfileServer())
 val sessionServer = TestActorRef(new SessionServer(mutable.Map(
 testContext -> mutable.Set(profileServer),
 None -> mutable.Set(profileServer2)
)))

 When("both profile servers are shut down")

 profileServer ! PoisonPill
 profileServer2 ! PoisonPill

 And("we ask for sessions for what would have been their contexts")

 val future = sessionServer ? SessionRequest(testContext)
 val future2 = sessionServer ? SessionRequest()

 Then("the session server should be able to hand out empty sessions")

 val Success(session: Session) = future.value.get
 val Success(session2: Session) = future2.value.get

 session.actorRef shouldEqual None
 session2.actorRef shouldEqual None
}

}

Figure 4, cont.

 18

feature("Recommenders should function with only other recommenders") {
scenario("No profile servers left should not be a problem") {
 Given("a session server that has no active profile server")
 val sessionServer = TestActorRef(new SessionServer())

 When("a recommender is initialized")

 val recommender = TestActorRef(new Recommender(User(getTestID), mutable.Set(),

mutable.Set(), mutable.Set(sessionServer)))

 Then("the recommender should be able to serve a recommendation")

 recommender ? RecommendationRequest()
}

}

Figure 5: Session Server Availability Test

 19

FUTURE WORK

There are two main areas for future work that are in line with the goal of this

paper, architecture design and a reusable implementation. For architecture design, an

interesting extension is the User owning multiple Recommender components. This means

that the Private User Profile needs to leave the Recommender component that owns it,

bringing in a new security problem to solve. For a reusable implementation, there are

several things to work on: open-sourcing the code, packaging, documentation, further

testing, etc. If the reusable implementation is meant to be large-scale, it could be

extended to include integration with Docker, a containerization technology, which would

enable that kind of deployment. For example, Amazon Web Services (AWS) offers

Docker support and integration.

Other future work might include designing plugin interfaces for the algorithms

(for example, the Recommendation Algorithm) and even providing extendable

implementations for the algorithms. An interesting algorithm to write would be the

Session Algorithm for balancing across Profile Servers. The simple implementation is

balancing across different Contexts but there are issues to overcome with that approach.

Finally, more work on the data structures used to represent Profiles, Context and

Preferences could make the system even more flexible. For example, the simple

implementation of Context is a tuple of categorized values. Introduction of a “fuzzy”

Context that is not strict on specific values could benefit the Profile Anonymization

Algorithm, which has to consider Context when merging Profiles, and possibly even the

Session Algorithm mentioned above.

 20

CONCLUSION

The goal of this paper was to present an architecture blueprint for a context-aware

recommender system that provides scalability, availability, and security for its users.

Though there is much room for improvement, the analysis reveals that this goal was met.

Though the scalability of the architecture depends mostly on the physical layer, it was

shown that group formation is polynomial in time. Additionally, balancing and node

failures were taken into account, problems that become more prevalent as the system

scales. Security issues in the architecture were pushed out of the network with the

Session Server handing out trusted Sessions to the Recommender and the Profile Server.

Finally, availability of the system is improved over previous works since the absence of

components in the Static Zone (servers) are not essential to the desired functionality of

the system.

Recommender systems are quickly becoming a necessary part of software

products, regardless of industry or application. Providing a architecture blueprint for

students and others to use reduces the amount of “boilerplate” design work and coding

between projects and introduces a common understanding of what the architecture should

be. The base implementation provides a good testing harness for future work and the

details in this paper and in the Appendix provide enough information to make

improvements without compromising the design goals. Collaborative software

engineering across organizational or other boundaries can determine the success or

failure of a project, and having common abstractions eases that process.

 21

Appendix

DATA

Item

An Item is an entity that can be consumed and rated by or recommended to a user

of the system. This paper does not consider where the Items in the system are hosted and

served from.

Context

In order to make the recommender system context-aware, the Recommendations

must be made after considering the Context of a user. Context is a general term for any

information available at the time the Recommendation is requested. For example, the

most common Context information is time and location. Knowing the current time and

the location of the user could allow the system to provide a better recommendation to the

user than if the Context had not been considered.

A Context object has a set of categorized tuples of arbitrary size containing

various pieces of information. It is important to note these data are the secondary factor

considered when making Recommendations to users of the system, largely due to the fact

that they may not always be available.

Preference

Preferences are simply a measurement of a user’s affinity towards an Item. The

architecture presented in this paper will be agnostic to the actual representation of these

measurements and refer to them as Preferences.

 22

Recommendation

Recommendations are simply an ordered set of Items given to a user by the

system. This paper does not consider the representation of the Recommendations. They

will be generated by a Recommendation Algorithm and are the only output of the system

to a user.

User Profile

A User Profile contains entries pertaining to a specific user of the system with

regards to Preferences for Items in the system. These entries are the primary factor

considered when making recommendations to a user of the system. A User Profile entry

is simply a tuple containing an Item or a reference to the Item, a Context object, and a

Preference. Since the Context is not always guaranteed to be present, it is considered

optional in the entry.

Subsets of the User Profile are allowed to have different semantics: Private,

Protected, or Public.

Figure 6: User Profile Subsets

 23

Private

By default, the User Profile will be treated as Private. The Private User Profile

will not leave the node that created it without the user’s permission and the system cannot

use it to make recommendations to other users. However, it can be used to make

recommendations to the user who owns it. If the Private User Profile is copied to another

node in the system, it first must be encrypted via a Profile Encryption Algorithm.

Protected

A user of the system may elect to allow the system to make recommendations

based on their preferences with a caveat of protection of that data. The Protected User

Profile can only be present on the node that owns it and sent to static nodes in the system.

That is, it cannot be sent to transient nodes in the system. Additionally, it cannot be

directly used to make recommendations to other users; it must first go through a Profile

Protection Algorithm, which will generate an Anonymous User Model.

Public

A user of the system may elect to allow the system to make recommendations

based on their preferences with no restrictions. The Public User Profile can be present on

any node in the system and therefore can be directly used to make recommendations to

any user of the system.

Anonymous User Profiles

An Anonymous User Profile is a User Profile that is not associated with a

particular user and cannot be mapped back to a real User Profile. That is, there is no way

to obtain the data in a real User Profile from an Anonymous User Profile. Anonymous

User Profiles are generated via Profile Anonymization Algorithm and therefore can be

 24

derived from one or more Protected User Profiles. It can be used to make

recommendations for any user in the system.

Group Profile

A Group Profile is an entity owned by a Recommender component and is used to

make recommendations to a user of the system. Castagnos and Boyer proposed a Group

Profile that served as a “virtual community of interests” and contained real User Profiles

that passed a threshold based on a similarity metric [10]. This paper extends their idea

slightly. Along with real Public User Profiles, Group Profiles can also contain

Anonymous User Profiles and will be maintained with a Group Profile Algorithm.

Subscriber List

A Subscriber List is associated with a User Profile and is simply a list of nodes

that need to be notified when the User Profile is updated. A Preference algorithm will

determine the method and timing of the notification.

COMPONENTS

Context Sensor

The Context Sensor is component contained only within a transient node in the

system. As its name suggests, it will manage Context data. Its responsibilities include

collecting, storing, updating, and offloading Context data. Context Sensors can

communicate with Recommenders, Session Servers, and Profile Servers.

Context Sensors are the only components that produce Context data. This

information is then offloaded to Recommenders or Profile Servers. If no instances of

those components are reachable then the Context Sensor stores the Context data until an

instance is reachable.

 25

Recommender

The Recommender is also a component contained only within a transient node in

the system. It will manage data needed to provide recommendations to a user of the

system, namely User Profiles and Group Profiles. Its responsibilities include storing,

updating, and transmitting Profile data and creating Recommendation objects. The

Recommender component can communicate with other Recommenders, Context Sensors,

Session Servers, and Profile Servers.

Session Server

The Session Server is a component contained only within a static node in the

system. It will manage data related to Sessions between Transient and Static nodes in the

system. Its responsibilities include creating and managing Sessions, storing and

offloading Session data. Session Servers can communicate with other Session Servers,

Context Sensors, Recommenders, and Profile Servers.

Profile Server

The Profile Server is a component contained only within a static node in the

system. It will manage data needed to provide better recommendations to a user, namely

Anonymous User Profiles. Its responsibilities include collecting, storing, updating, and

transmitting Anonymous User Profiles. Profile Servers can communicate with each other

and all other components.

ALGORITHMS

This section describes the requirements and provides example implementations

for the algorithms that would be implemented in a recommender system adopting the

proposed architecture. It is worth noting that this paper proposes a generic architecture

 26

that is not implementation dependent and so any implementation examples provided are

not required ones.

Recommendation Algorithm

There are many Recommendation Algorithms in existence but this paper will

simply list the basic requirements for such an algorithm. A Recommendation Algorithm

must take as input the preferences of users of the system and, optionally, associated

Context information. It should provide a set of Recommendations as output. In general,

there are two parts to the algorithm: finding the best neighbors and choosing which Items

belong in the result set.

Profile Anonymization Algorithm

A Profile Anonymization Algorithm should take as input a set of User Profiles

and output an Anonymous User Profile that cannot be mapped back to the original User

Profiles. It should attempt to preserve the value of the data in the for the system. An

implementation that produces an Anonymous User Profile by completely randomizing

the data in a User Profile no longer has value since the system cannot make useful

Recommendations from it.

Profile Encryption Algorithm

A Profile Encryption Algorithm simply encrypts a User Profile so that it cannot

be used maliciously if it is intercepted while being transmitted. The User Profile should

be able to be decrypted on the destination, which suggests an asymmetric encryption

scheme or possibly an additional optional component.

 27

Group Profile Algorithm

A Group Profile Algorithm manages the Group Profile data in a Recommender

component. The algorithm should add relevant User Profiles to the Group and remove

and that have become irrelevant. A threshold based on a similarity metric should

determine relevancy.

Preference Algorithm

A Preference Algorithm should be able to update the User Profile with an entry

using a Preference, Item and optionally a Context object. An additional requirement is

that it notify all subscribers to the profile, i.e., the nodes in the Subscriber List.

Session Algorithm

A Session Algorithm is responsible for managing the lifecycle of a Session. This

paper defines Session as temporary data interchange between a transient and static node.

The algorithm should be able to start and end a Session between a node in the Transient

Zone and a node in the Static Zone.

 28

References

[1] G. Adomavicius and A.Tuzhilin. “Context-Aware Recommender
Systems,” [Online]. Available: http://ids.csom.umn.edu/faculty/gedas/NSFCareer
/CARS-chapter-2010.pdf

[2] A. Jeckmans, A. Peter and P. Hartel. “Efficient Privacy-Enhanced Familiarity-
Based Recommender System,” [Online]. Available: https://pdfs.semanticscholar
.org/9a24/f138cc1162e4c24cdafddd542f575066f83d.pdf

[3] G. Adomavicius and A. Tuzhilin. “Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions,” [Online].
Available: http://pages.stern.nyu.edu/~atuzhili/pdf/TKDE-Paper-as-Printed.pdf

[4] T. Z., Z. K., J. L, M. M., J. R. W. and Yi-Cheng Zhang. “Solving the apparent
diversity-accuracy dilemma of recommender systems,” [Online]. Available:
https://arxiv.org/pdf/0808.2670.pdf

[5] M. R., N. D., B. B., K. P., B. P., V. B., A. W. and Paul Rasmussen. “Scalable
Architecture for Context-Aware Activity-Detecting Mobile Recommendation
Systems,” [Online]. Available: https://www.parc.com/content/attachments/
scalable-architecture-context-aware.pdf

[6] B. N. M., J. A. K., and John Riedl. “PocketLens: Toward a personal recommender
system,” [Online]. Available: https://www.researchgate.net/publication/
220515913_PocketLens_Toward_a_personal_recommender_system

[7] D. Batory and S. O’Malley. “The Design and Implementation of Hierarchical
Software Systems With Reusable Components,” [Online]. Available:
http://www.cse.msu.edu/~cse870/Materials/Frameworks/tosem-92.pdf

[8] S. Castagnos and A. Boyer. “A Client/Server User-Based Collaborative
Filtering,” [Online]. Available: https://hal.archives-ouvertes.fr/inria-00104863/
document

[9] A. B., D. F., R. G., A. K. and Rhicheek Patra. “HyRec: Leveraging Browsers for
Scalable Recommenders,” [Online]. Available: https://hal.inria.fr/hal-01080016/
document

[10] S. Castagnos and A. Boyer. “Modeling Preferences in a Distributed
Recommender System,” [Online]. Available: https://hal.archives-ouvertes.fr/inria-
00171802/ document

[11] A. B., A. K., D. F., R. G. and Arnaud J´egou. “Privacy-Preserving Distributed
Collaborative Filtering,” [Online]. Available: https://hal.inria.fr/hal-
00799209/file/RR-8253.pdf

 29

[12] A. B., D. F., A. J., A. K. and H. B. Ribeiro. “FreeRec: an Anonymous and
Distributed Personalization Architecture,” [Online]. Available:
https://hal.inria.fr/hal-00844813/file/main.pdf

[13] F. McSherry and I. Mironov. “Differentially Private Recommender Systems,”
[Online]. Available: https://www.microsoft.com/en-us/research/wp-content/
uploads/2009/06/NetflixPrivacy.pdf

[14] M.O., P.A., V.C., I.D., G.D., B.E., S.M., S.M., N.M., M.S., E.S., L.S., and
Matthias Zenger. “An Overview of the Scala Programming Language,” [Online].
Available: http://www.scala-lang.org/docu/files/ScalaOverview.pdf

[15] S. Tasharofi, P. Dinges and R. Johnson. “Why Do Scala Developers Mix the
Actor Model with Other Concurrency Models?,” [Online]. Available:
https://www.ideals.illinois.edu/bitstream/handle/2142/34816/fase2013_submissio
n.pdf

[16] A. Miele, E. Quintarelli and L. Tanca. “A methodology for preference-based
personalization of contextual data,” [Online]. Available: https://openproceedings.
org/2009/conf/edbt/MieleQT09.pdf

 30

Vita

Neel Harish Shah is a Software Engineer and Entrepreneur that graduated from

the University of Texas at Austin with a BS in Electrical and Computer Engineering with

a Business Foundations Certificate in the Spring of 2013 and a MS in Software

Engineering in the Fall of 2016. He currently works for a marketing technology company

called MaxPoint and is co-founder and CTO of Zateo Inc.

Permanent email: neel.shah.528@gmail.com

This report was typed by Neel Harish Shah

