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Abstract 

 

Generic System Architecture for Context-Aware, Distributed 
Recommendation 

 

Neel Harish Shah, M.S.E. 

The University of Texas at Austin, 2016 

 

Supervisor:  Christine Julien 

 

In the existing literature on recommender systems, it is difficult to find an 

architecture for large-scale implementation. Often, the architectures proposed in papers 

are specific to an algorithm implementation or a domain. Thus, there is no clear 

architectural starting point for a new recommender system. This paper presents an 

architecture blueprint for a context-aware recommender system that provides scalability, 

availability, and security for its users. The architecture also contributes the dynamic 

ability to switch between single-device (offline), client-server (online), and fully 

distributed implementations. From this blueprint, a new recommender system could be 

built with minimal design and implementation effort regardless of the application. 
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 1 

INTRODUCTION 

As Web 2.0 technology matures, recommendations are becoming a highly valued 

feature for websites and applications. This has driven interest in researching 

recommendation algorithms and methodologies of varying complexities and domain-

specific optimizations. In general, recommender systems have two first-class entities: 

users and items. Recommender systems generally utilize user preferences and item 

relationships to provide recommendations. 

Context-aware recommender systems, which allow recommender systems to use 

other applicable information besides user preferences to make recommendations, have 

become increasingly relevant to the area. This is because it has been shown, in many 

domains, that it is not sufficient to rely only on the users and items in the system to make 

accurate recommendations; the context in which a user takes an action toward an item is 

directly relevant to how another user might behave in a similar context [1]. For example, 

a user’s interests might be affected by the current date, season, or temperature. Thus, it is 

important to capture these data when a user records their preferences so that 

recommendations to other users in a similar context are improved. 

Although context-awareness leads to better recommendations, it introduces 

several issues. Managing context information increases the size of the data managed by 

the system, creating a larger workload and emphasizing the need for a scalable 

recommender system. Portability of a mobile recommender system could be affected due 

to the unreliable nature of context information. Context information also poses a new 

security problem because of the additional sensitive data now managed by the system [2]. 
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The primary requirement of a recommender system is two-fold: to understand the 

preferences of users for items, and to use these preferences to make recommendations for 

items to other users of the system [3].  But as research and practical use cases for 

recommender systems mature, it is clear that there are secondary requirements regarding 

scalability, availability and security. 

Scalability is an issue to be tackled with any system that experiences workload 

growth. For recommender systems, this generally means an increase in the number of 

users. Obviously, large-scale recommender system architectures have been designed, 

deployed and are in use today. Companies like Amazon, TiVo, and others employ these 

systems to make recommendations to their users [4]. Moreover, the algorithms 

implemented in these architectures are rather complex due to domain-specific 

optimizations and deal with an enormous amount of data. 

Another aspect of scale for recommender systems is portability: providing 

recommendations to users that are on a mobile device. Portable recommendations have 

become relevant only in the last decade, due to the rapidly increasing number of 

smartphone users [5].  

Portable recommender systems have risen to the challenge but pose new problems 

due to the transient and unpredictable nature of smartphone devices. Additionally, mobile 

devices emphasize recommendation practices that were not prevalent before, such as 

context-awareness. Location and device type are good examples of contextual 

information that is useful when providing recommendations, and there are plenty more. 

There are two main security issues with recommender systems: the privacy of 

personal information and reliability of recommendations [6]. A recommender system can 

only function if its users are willing to provide the system with their preferences. This 

information is considered sensitive by the user and should be protected by the system and 
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not used maliciously. Ideally, the users would trust the system to provide them with 

reliable recommendations. This means the parts of the system that could alter the data 

used for recommendations need to be secured.  

When designing a large-scale software system as a solution to a problem, 

software engineering best practices dictate considering requirements and developing a 

reusable, component-based architecture driven by those requirements before 

implementation [7]. In many cases, an architecture can itself be reused if it is generic 

enough. The goal of this paper is to propose an architecture blueprint for a context-aware 

recommender system that has features desired in large-scale implementation.  
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LITERATURE REVIEW 

There have been several architectures proposed for distributed recommender 

systems. In general, the proposals are limited in their features and are not suited for large-

scale implementations. There are a few noted exceptions, and this paper builds on those 

ideas. 

Adomavicius and Tuzhilin discuss the definition and nature of context 

information in Context-Aware Recommender Systems (CARS) as well as paradigms for 

using the information for making recommendations [1]. They mention a scalability issue 

with the dimensionality of the context information but do not discuss storage approaches. 

Roberts et al. consider context-awareness for recommendations when deriving a system 

architecture and go into implementation details of data structures for geographic context 

and associated storage mechanisms, but only for a single-server architecture [5]. This 

paper will describe the architectural requirements to support distributed context-

awareness but does not explore details of context utilization. 

In terms of generic approaches, there are various client/server proposals such as 

the single server architecture proposed by Castagnos and Boyer [8]. In this paper, they 

propose a hybrid recommendation algorithm that addresses privacy concerns and is 

implemented on the client/server architecture by keeping sensitive information client side 

and anonymizing any server side information. A similar approach, called HyRec, is taken 

by Boutet et al. and shifts computational expense to the client in the name of cost [9]. The 

two approaches are similar but focus on different goals. However, both ignore certain 

scalability issues such as node failure and load balancing. 

Castagnos and Boyer later addressed scalability issues by adopting a P2P 

architecture for a decentralized algorithm [10]. They claim to maintain privacy by 
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disassociating user identity through a unique ID, but do not discuss the generation of this 

ID. Further, they mention identification of malicious users but do not elaborate on that 

process. They do concede that the decentralized architecture requires more network 

traffic and reference the PocketLens paper as a source for alternative P2P architectures to 

reduce this traffic. In this popular paper, Miller et al. consider multiple architectures 

(centralized and decentralized) on which to implement the PocketLens algorithm [6]. The 

goal of the personal recommender algorithm implementation was portability and trust for 

users of the system, which they show can be achieved in a variety of architectures with 

varying performance and scalability. Of the architectures discussed, each was shown to 

either have potential security flaws or significant degradation in performance. 

A common theme for distributed recommender systems is the security of the 

sensitive data in the system, particularly if it comes directly from a user. There are 

algorithmic approaches such as the obfuscation technique Boutet et al. created in [11] 

which produces a tradeoff between privacy and accuracy. This tradeoff is also shown by 

Castagnos and Boyer in [8] to a lesser degree when clustering user profiles. There are 

also more architectural approaches such as the three-layer anonymity model called 

FreeRec described by Boutet et al. in [12], though this approach did only consider one 

type of attack. This paper takes an architectural approach to address security and 

elaborates on components proposed by Castagnos and Boyer in [8] and [10]. 

In summary, the current literature provides architectures that each focus on a 

subset of the requirements for a large-scale recommender system. This paper proposes a 

distributed architecture that accounts for node failure and load balancing. In addition, the 

architecture adds a layer of security to enable operation in three different modes: online 

(client-server), distributed, and offline. 
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APPROACH 

This section provides an overview of the proposed architecture and highlights the 

contributions in this paper to the area. Table 1 explains the four main components: the 

Context Sensor, the Recommender, the Session Server, and the Profile Server. Figure 1 

depicts the organization and communication paths of these components. 

Overview 

Though this section discusses the logical layer of the architecture, it is necessary 

to define two component zones that illustrate the mobile nature of the physical 

deployment layer. The two zones are the Transient Zone and the Static Zone. The 

Transient Zone contains components that will be deployed on a set of transient nodes: a 

set of mobile, heterogeneous, and impermanent nodes. In the Static Zone, components 

will be deployed on a set of static nodes: a set of immobile, relatively homogenous, and 

permanent nodes. 

In general, the Transient Zone can be thought of as containing mobile devices 

such as phones, tablets and IoT sensors with little resources. Conversely, the Static Zone 

contains machines with more resources. Since the components in the Static Zone function 

as servers, the Client/Server organization is emphasized. This is made more apparent in 

Figure 1. Also in Figure 1, it is shown that Recommender components can talk to each 

other, which illustrates the distributed property of the Transient Zone. The full nature of 

this behavior is discussed in the next section but this communication is still possible 

when connections to the Static Zone are closed. Those connections are managed by 

Session Server components; this paper entertains the case where no Profile Servers are 

available or no Session Servers are available. For a full description of all components, 

please see the Appendix. 
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Component Zone Data Function 

Context 
Sensor 

Transient Context Manages Context information 
used to build Profiles and request 

Recommendations 

Recommender Transient User Profile, Group Profile, 
Recommendations, 

Subscriber List 

Manages Profiles and provides 
Recommendations to the user 

Session 
Server 

Static Sessions Manages Session state between 
the Transient and Static Zone 

Profile Server Static Anonymous User Profiles Manages Anonymous User 
Profiles 

Table 1: Architecture Component Overview 

 

Figure 1: Component Organization and Communication Paths 



 8 

Contributions 

ANONYMOUS USER PROFILE 

User Profiles, which are simply a collection of Preferences a User has for Items in 

the system, can leave the user’s device to be served to other users in the client/server 

architecture. In order to provide privacy to the user, that data must be secured in some 

way. The most efficient family of methods alters the data so that it is not traceable back 

to an individual user. Castagnos and Boyer adopted user modeling as an approach for 

serving secure User Profile data from the server [10]. Their approach clustered similar 

users together to build typical User Profiles. Security can also be achieved by obfuscating 

the data in other ways, for example, by adding noise to the profiles [13]. For the purposes 

of this paper, this process is abstracted and the resulting data is named an Anonymous 

User Profile. 

A User of this recommender system can be asked to categorize their Preferences 

into three different categories: Public, Private, or Protected. Public information can be 

accessible to everybody, even entities outside of the recommender system. Private 

information cannot be accessible to anybody other than the owner of that information, 

even inside of the recommender system. Protected information can be accessible to 

everybody, but must not be traceable back to the user. Hence, the Protected User Profile 

subset is used to generate the Anonymous User Profiles kept on the servers. Note that the 

Protected User Profile includes the Public User Profile. For a full description of the 

relationship between the categories, please see the Appendix. 

GROUP PROFILES 

Group Profiles were proposed by Castagnos and Boyer and represent “a virtual 

community of interests” distributed across the peers in their system [8]. They proposed to 
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build Group Profiles based on the Public User Profiles of a user’s peers performing above 

a threshold on a similarity metric. These Group Profiles would then be updated when 

each Public User Profile was changed. This paper extends the membership of Group 

Profiles to include Anonymous User Profiles as well as Public User Profiles. This enables 

the system to perform reasonably well when components in the Static Zone are 

unavailable. In effect, the system can switch from a client/server implementation to a 

fully distributed implementation since it now has access to information in other 

components in the Transient Zone similar to what it was getting from the servers in the 

Static Zone.  

It is worth noting that the Public User Profiles present in a User’s Group Profile 

have already been deemed similar enough to the User and can be considered good 

sources for Anonymous User Profiles similar to the current User Profile. However, there 

may be performance degradation in terms of the accuracy of recommendations since not 

all Anonymous User Profiles will be available. In particular, there is no guarantee that the 

best Anonymous User Profile based on the Context may not be available. 

AVAILABILITY 

As shown in previous work, a recommender system can function in a client-server 

architecture or in a completely distributed architecture. The proposed architecture offers a 

marriage of both. If all components are available, recommenders can maintain a Group 

Profile using a Group Profile Algorithm (Appendix A) that requests Profiles from other 

Recommenders and Profile Servers (via a Session Server). If Profile Servers become 

unavailable, the Session Servers can redirect Recommenders to other Profile Servers. If a 

Session Server cannot provide a Profile Server or it goes down itself, there may be other 

Session Servers to serve the Recommenders. Alternatively, the Recommenders can 
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continue asking other Recommenders for Profiles (Recommenders can provide 

Anonymous Profiles from their Group Profile if needed). In this state, the system is 

completely distributed. On the other hand, if there are no other Recommenders available 

to ask for Profiles, a Recommender can rely on the Session and Profile Servers for 

updated information. If no other components are available, the Recommender can fall 

back to the Group Profile it is maintaining. In the worst case, the Recommender has 

never built a Group Profile, which might force an Item-Item Recommendation Algorithm 

(Appendix A) to be used. 
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IMPLEMENTATION 

The implementation was created as a Proof of Concept (POC) and serves as a 

mechanism to test the architecture design for key features like scalability, privacy and 

availability. The Scala language was chosen due to the succinctness of syntax and clarity 

attainable for feature driven testing [14]. This resulted in fewer lines of code for the base 

implementation and expressiveness of features when writing programmatic test cases. 

The Akka message passing framework as written in the Scala language was 

chosen to implement the POC. Message passing allows implementation of a client-server 

interaction without restriction to that type of interaction. In addition, the Akka framework 

provides an abstraction for components called Actors [15]. The Actors’ capabilities mesh 

well with the behaviors of components as designed in this paper. The framework also 

allows monitoring of Actors in the system, enabling the availability feature of the 

proposed architecture.  

Due to a message-passing framework being chosen, serializable data structures 

were used to facilitate a quicker implementation. In the Scala language, the case class 

concept allows for easy creation of serializable data structures. However, due to several 

layers of abstraction and restrictions of the language, case classes were not used 

everywhere. Therefore, some of the complex structures like Profiles had to be modeled as 

map structures [16].  

In order for the system to be programmatically tested, some of the algorithms 

required for the system were given simple implementations. These should not be used for 

real implementations of such a system and their performance is not indicative of the 

performance of alternate algorithms at scale. 
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ANALYSIS 

The analysis of the implementation focused on scalability, security, and 

availability of the architecture. All testing was done on a single physical machine with 4 

logical cores and 16 gigabytes of memory. The datasets used for scalability tests were 

randomly generated Users and Preferences and the other functional tests were smaller, 

reproducible datasets. 

Scalability 

A recommender system’s performance should scale with the number of Users in 

the system. Since the Recommendation Algorithm was not implemented practically, it 

cannot be used to judge the performance of the system. From an architectural perspective, 

since the Recommendation Algorithm is supposed to run on a single component (the 

Recommender), we can claim that the architecture does not inherently affect the 

performance of the Recommendation Algorithm, but rather the physical specification of 

the device on which the Recommender is deployed.  

What we can measure is how long it takes to form a group of a certain number of 

Users. This is simply the amount of time it takes Recommenders to initialize (gathering 

Profiles from other Recommenders and Profile Servers in their group). Since the current 

implementation pushes every update to any Profile to all subscribers (components that 

have that Profile in their Group Profile), there is a natural polynomial trend as shown in 

Figure 2. These measurements could help identify a threshold of concurrent Users within 

a User Group.  
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Figure 2: User Group Initialization Performance 

Security 

There are two requirements of the system for security of user information: privacy 

and reliability. The proposed architecture does its best to address these requirements 

directly without relying on underlying algorithms. Of course, security algorithms relating 

to encryption, gossip, and obfuscation can be applied to the final implementation to 

address any additional requirements. 

From the perspective of privacy, Public User Profiles have no security constraints 

on them and are the only part of the Profile exposed by a Recommender to another 

Recommender. Protected User Profiles are only exposed to Profile Servers through a 

Session granted by a Session Server. The Session Servers manage the Profile Server 

balancing and so are aware of only legitimate Profile Servers. The scenario tests in Figure 
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3 show that the User Profile implementation is able to provide appropriate subsets of the 

Profile. Note that the APIs used in the tests would be inaccessible to external Actors.  

Even though the Protected User Profile is sent without any indication of which 

User it belongs to, an adversary who is posing as a Session Server might still be able to 

get access to it. This issue is handled by initializing a Recommender with references to 

trusted Session Servers. Finally, Private User Profiles never leave the Recommender that 

owns the Profile. This behavior is ensured by the Recommender implementation. 

From a reliability standpoint, an adversary posing as a Recommender could also 

fool the Profile Servers. The false Recommender could inject Preferences into the 

Anonymous User Profile managed by the Profile Server. This is difficult to prevent but 

the effect is mitigated since there are many Profile Servers and the Preferences are 

weighted and merged with others in the Anonymous User Profiles. Additionally, the 

Recommendation that the system makes is not solely based on Anonymous User Profiles 

but also other User Profiles in the Group Profile, reducing the effect of a malicious 

Profile further. 
 
feature("User profile should filter preferences based on privacy level") { 
scenario("Asking for private data should return all data") { 
  Given("a user profile") 

 
  val preferences: ItemPreferences = mutable.Map( 
    (Item(getTestID), None) -> Preference("5"), 
    (Item(getTestID), None) -> Preference("4", PROTECTED), 
    (Item(getTestID), None) -> Preference("3", PROTECTED), 
    (Item(getTestID), None) -> Preference("2", PUBLIC), 
    (Item(getTestID), None) -> Preference("1", PUBLIC) 
  ) 

 
  val userProfile = UserProfile(User(getTestID), preferences) 

 
  When("asking for private data") 

 
  val filteredPreferences = userProfile.privateCopy 

Figure 3: User Profile Security Tests 
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  Then("the profile should contain the same preferences") 

 
  assert(filteredPreferences.profile.equals(preferences)) 
} 
scenario("Asking for protected data should return protected and public data") { 

 
  Given("a user profile") 

 
  val protectedPreferences: ItemPreferences = mutable.Map( 
    (Item(getTestID), None) -> Preference("4", PROTECTED), 
    (Item(getTestID), None) -> Preference("3", PROTECTED), 
    (Item(getTestID), None) -> Preference("2", PUBLIC), 
    (Item(getTestID), None) -> Preference("1", PUBLIC) 
  ) 
  val preferences: ItemPreferences = mutable.Map( 
    (Item(getTestID), None) -> Preference("5") 
  ) 

 
  val userProfile = UserProfile(User(getTestID), protectedPreferences ++ preferences) 

 
  When("asking for private data") 

 
  val filteredPreferences = userProfile.protectedCopy 

 
  Then("the profile should contain only the protected preferences") 

 
  assert(filteredPreferences.profile.equals(protectedPreferences)) 
} 

 
scenario("Asking for public data should return only public data") { 

 
  Given("a user profile") 

 
  val publicPreferences: ItemPreferences = mutable.Map( 
    (Item(getTestID), None) -> Preference("2", PUBLIC), 
    (Item(getTestID), None) -> Preference("1", PUBLIC) 
  ) 
  val preferences: ItemPreferences = mutable.Map( 
    (Item(getTestID), None) -> Preference("5"), 
    (Item(getTestID), None) -> Preference("4", PROTECTED), 
    (Item(getTestID), None) -> Preference("3", PROTECTED) 
  ) 

 
  val userProfile = UserProfile(User(getTestID), publicPreferences ++ preferences) 

 
  When("asking for private data") 
  val filteredPreferences = userProfile.publicCopy 

 
  Then("the profile should contain only the protected preferences") 
  assert(filteredPreferences.profile.equals(publicPreferences)) 
} 

} 

Figure 3, cont. 
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Availability 

For availability, the proposed system offers a capability to switch between offline, 

client-server and fully distributed operations. In order to test this fully, components in the 

system had to be taken out at runtime. The first availability test suite, shown in Figure 4, 

made sure Session Server components function appropriately if Profile Servers 

unexpectedly went down. This means the Session Server remained stable (all Session 

requests were handled) and the Profile Server was not introduced to any Recommenders 

that requested a Session after the Profile Server went down. 

The second availability test suite, shown in Figure 5, ensured that Recommenders 

function appropriately when Session Servers unexpectedly went down. This means the 

Recommender remained stable (all Recommendation requests were handled). 

Additionally, a system initialized with only Recommenders and Context Sensors should 

remain stable. 
 

feature("Session servers should function if profile servers die") { 
scenario("A single profile server dies") { 
  Given("a session server managing two profile servers") 
 
  val testContext = Some(Context("testContext")) 
  val profileServer = TestActorRef(new ProfileServer(testContext)) 
  val profileServer2 = TestActorRef(new ProfileServer()) 
  val sessionServer = TestActorRef(new SessionServer(mutable.Map( 
    testContext -> mutable.Set(profileServer), 
    None -> mutable.Set(profileServer2) 
  ))) 
 
  When("one profile server is shut down") 
 
  profileServer ! PoisonPill 
 
  And("we ask for a session for what would have been its context") 
 
  val future = sessionServer ? SessionRequest(testContext) 
  val future2 = sessionServer ? SessionRequest() 
 
  Then("it should not be returned") 

Figure 4: Profile Server Availability Test 
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  val Success(session: Session) = future.value.get 
  val Success(session2: Session) = future2.value.get 
 
  session.actorRef shouldEqual None 
  session2.actorRef shouldEqual Some(profileServer2) 
 
} 
 
scenario("No profile servers left should not be a problem") { 
  Given("a session server managing two profile servers") 
 
  val testContext = Some(Context("testContext")) 
  val profileServer = TestActorRef(new ProfileServer(testContext)) 
  val profileServer2 = TestActorRef(new ProfileServer()) 
  val sessionServer = TestActorRef(new SessionServer(mutable.Map( 
    testContext -> mutable.Set(profileServer), 
    None -> mutable.Set(profileServer2) 
  ))) 
 
  When("both profile servers are shut down") 
 
  profileServer ! PoisonPill 
  profileServer2 ! PoisonPill 
 
  And("we ask for sessions for what would have been their contexts") 
 
  val future = sessionServer ? SessionRequest(testContext) 
  val future2 = sessionServer ? SessionRequest() 
 
  Then("the session server should be able to hand out empty sessions") 
 
  val Success(session: Session) = future.value.get 
  val Success(session2: Session) = future2.value.get 
 
  session.actorRef shouldEqual None 
  session2.actorRef shouldEqual None 
} 

} 

Figure 4, cont. 
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feature("Recommenders should function with only other recommenders") { 
scenario("No profile servers left should not be a problem") { 
  Given("a session server that has no active profile server") 
  val sessionServer = TestActorRef(new SessionServer()) 

 
  When("a recommender is initialized") 

 
  val recommender = TestActorRef(new Recommender(User(getTestID), mutable.Set(), 

mutable.Set(), mutable.Set(sessionServer))) 
 

  Then("the recommender should be able to serve a recommendation") 
 

  recommender ? RecommendationRequest() 
} 

} 

Figure 5: Session Server Availability Test 
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FUTURE WORK 

There are two main areas for future work that are in line with the goal of this 

paper, architecture design and a reusable implementation. For architecture design, an 

interesting extension is the User owning multiple Recommender components. This means 

that the Private User Profile needs to leave the Recommender component that owns it, 

bringing in a new security problem to solve. For a reusable implementation, there are 

several things to work on: open-sourcing the code, packaging, documentation, further 

testing, etc. If the reusable implementation is meant to be large-scale, it could be 

extended to include integration with Docker, a containerization technology, which would 

enable that kind of deployment. For example, Amazon Web Services (AWS) offers 

Docker support and integration.  

Other future work might include designing plugin interfaces for the algorithms 

(for example, the Recommendation Algorithm) and even providing extendable 

implementations for the algorithms. An interesting algorithm to write would be the 

Session Algorithm for balancing across Profile Servers. The simple implementation is 

balancing across different Contexts but there are issues to overcome with that approach. 

Finally, more work on the data structures used to represent Profiles, Context and 

Preferences could make the system even more flexible. For example, the simple 

implementation of Context is a tuple of categorized values. Introduction of a “fuzzy” 

Context that is not strict on specific values could benefit the Profile Anonymization 

Algorithm, which has to consider Context when merging Profiles, and possibly even the 

Session Algorithm mentioned above. 
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CONCLUSION 

The goal of this paper was to present an architecture blueprint for a context-aware 

recommender system that provides scalability, availability, and security for its users. 

Though there is much room for improvement, the analysis reveals that this goal was met. 

Though the scalability of the architecture depends mostly on the physical layer, it was 

shown that group formation is polynomial in time. Additionally, balancing and node 

failures were taken into account, problems that become more prevalent as the system 

scales. Security issues in the architecture were pushed out of the network with the 

Session Server handing out trusted Sessions to the Recommender and the Profile Server. 

Finally, availability of the system is improved over previous works since the absence of 

components in the Static Zone (servers) are not essential to the desired functionality of 

the system.  

Recommender systems are quickly becoming a necessary part of software 

products, regardless of industry or application. Providing a architecture blueprint for 

students and others to use reduces the amount of “boilerplate” design work and coding 

between projects and introduces a common understanding of what the architecture should 

be. The base implementation provides a good testing harness for future work and the 

details in this paper and in the Appendix provide enough information to make 

improvements without compromising the design goals. Collaborative software 

engineering across organizational or other boundaries can determine the success or 

failure of a project, and having common abstractions eases that process. 
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Appendix 

DATA 

Item 

An Item is an entity that can be consumed and rated by or recommended to a user 

of the system. This paper does not consider where the Items in the system are hosted and 

served from.  

Context 

In order to make the recommender system context-aware, the Recommendations 

must be made after considering the Context of a user. Context is a general term for any 

information available at the time the Recommendation is requested. For example, the 

most common Context information is time and location. Knowing the current time and 

the location of the user could allow the system to provide a better recommendation to the 

user than if the Context had not been considered. 

A Context object has a set of categorized tuples of arbitrary size containing 

various pieces of information. It is important to note these data are the secondary factor 

considered when making Recommendations to users of the system, largely due to the fact 

that they may not always be available. 

Preference 

Preferences are simply a measurement of a user’s affinity towards an Item. The 

architecture presented in this paper will be agnostic to the actual representation of these 

measurements and refer to them as Preferences. 
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Recommendation 

Recommendations are simply an ordered set of Items given to a user by the 

system. This paper does not consider the representation of the Recommendations. They 

will be generated by a Recommendation Algorithm and are the only output of the system 

to a user. 

User Profile 

A User Profile contains entries pertaining to a specific user of the system with 

regards to Preferences for Items in the system. These entries are the primary factor 

considered when making recommendations to a user of the system. A User Profile entry 

is simply a tuple containing an Item or a reference to the Item, a Context object, and a 

Preference. Since the Context is not always guaranteed to be present, it is considered 

optional in the entry. 

Subsets of the User Profile are allowed to have different semantics: Private, 

Protected, or Public. 

 

Figure 6: User Profile Subsets 
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Private 

By default, the User Profile will be treated as Private. The Private User Profile 

will not leave the node that created it without the user’s permission and the system cannot 

use it to make recommendations to other users. However, it can be used to make 

recommendations to the user who owns it. If the Private User Profile is copied to another 

node in the system, it first must be encrypted via a Profile Encryption Algorithm. 

Protected 

A user of the system may elect to allow the system to make recommendations 

based on their preferences with a caveat of protection of that data. The Protected User 

Profile can only be present on the node that owns it and sent to static nodes in the system. 

That is, it cannot be sent to transient nodes in the system. Additionally, it cannot be 

directly used to make recommendations to other users; it must first go through a Profile 

Protection Algorithm, which will generate an Anonymous User Model. 

Public 

A user of the system may elect to allow the system to make recommendations 

based on their preferences with no restrictions. The Public User Profile can be present on 

any node in the system and therefore can be directly used to make recommendations to 

any user of the system. 

Anonymous User Profiles 

An Anonymous User Profile is a User Profile that is not associated with a 

particular user and cannot be mapped back to a real User Profile. That is, there is no way 

to obtain the data in a real User Profile from an Anonymous User Profile. Anonymous 

User Profiles are generated via Profile Anonymization Algorithm and therefore can be 
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derived from one or more Protected User Profiles. It can be used to make 

recommendations for any user in the system. 

Group Profile 

A Group Profile is an entity owned by a Recommender component and is used to 

make recommendations to a user of the system. Castagnos and Boyer proposed a Group 

Profile that served as a “virtual community of interests” and contained real User Profiles 

that passed a threshold based on a similarity metric [10]. This paper extends their idea 

slightly. Along with real Public User Profiles, Group Profiles can also contain 

Anonymous User Profiles and will be maintained with a Group Profile Algorithm. 

Subscriber List 

A Subscriber List is associated with a User Profile and is simply a list of nodes 

that need to be notified when the User Profile is updated. A Preference algorithm will 

determine the method and timing of the notification. 

COMPONENTS 

Context Sensor 

The Context Sensor is component contained only within a transient node in the 

system. As its name suggests, it will manage Context data. Its responsibilities include 

collecting, storing, updating, and offloading Context data. Context Sensors can 

communicate with Recommenders, Session Servers, and Profile Servers.  
 

Context Sensors are the only components that produce Context data. This 

information is then offloaded to Recommenders or Profile Servers. If no instances of 

those components are reachable then the Context Sensor stores the Context data until an 

instance is reachable. 
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Recommender 

The Recommender is also a component contained only within a transient node in 

the system. It will manage data needed to provide recommendations to a user of the 

system, namely User Profiles and Group Profiles. Its responsibilities include storing, 

updating, and transmitting Profile data and creating Recommendation objects. The 

Recommender component can communicate with other Recommenders, Context Sensors, 

Session Servers, and Profile Servers. 

Session Server 

The Session Server is a component contained only within a static node in the 

system. It will manage data related to Sessions between Transient and Static nodes in the 

system. Its responsibilities include creating and managing Sessions, storing and 

offloading Session data. Session Servers can communicate with other Session Servers, 

Context Sensors, Recommenders, and Profile Servers.  

Profile Server 

The Profile Server is a component contained only within a static node in the 

system. It will manage data needed to provide better recommendations to a user, namely 

Anonymous User Profiles. Its responsibilities include collecting, storing, updating, and 

transmitting Anonymous User Profiles. Profile Servers can communicate with each other 

and all other components. 

ALGORITHMS 

This section describes the requirements and provides example implementations 

for the algorithms that would be implemented in a recommender system adopting the 

proposed architecture. It is worth noting that this paper proposes a generic architecture 
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that is not implementation dependent and so any implementation examples provided are 

not required ones. 

Recommendation Algorithm 

There are many Recommendation Algorithms in existence but this paper will 

simply list the basic requirements for such an algorithm. A Recommendation Algorithm 

must take as input the preferences of users of the system and, optionally, associated 

Context information. It should provide a set of Recommendations as output. In general, 

there are two parts to the algorithm: finding the best neighbors and choosing which Items 

belong in the result set. 

Profile Anonymization Algorithm 

A Profile Anonymization Algorithm should take as input a set of User Profiles 

and output an Anonymous User Profile that cannot be mapped back to the original User 

Profiles. It should attempt to preserve the value of the data in the for the system. An 

implementation that produces an Anonymous User Profile by completely randomizing 

the data in a User Profile no longer has value since the system cannot make useful 

Recommendations from it. 

Profile Encryption Algorithm 

A Profile Encryption Algorithm simply encrypts a User Profile so that it cannot 

be used maliciously if it is intercepted while being transmitted. The User Profile should 

be able to be decrypted on the destination, which suggests an asymmetric encryption 

scheme or possibly an additional optional component. 
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Group Profile Algorithm 

A Group Profile Algorithm manages the Group Profile data in a Recommender 

component. The algorithm should add relevant User Profiles to the Group and remove 

and that have become irrelevant. A threshold based on a similarity metric should 

determine relevancy. 

Preference Algorithm 

A Preference Algorithm should be able to update the User Profile with an entry 

using a Preference, Item and optionally a Context object. An additional requirement is 

that it notify all subscribers to the profile, i.e., the nodes in the Subscriber List. 

Session Algorithm 

A Session Algorithm is responsible for managing the lifecycle of a Session. This 

paper defines Session as temporary data interchange between a transient and static node. 

The algorithm should be able to start and end a Session between a node in the Transient 

Zone and a node in the Static Zone. 
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