1,457,878 research outputs found
Recognizing dualizing complexes
Let A be a noetherian local commutative ring and let M be a suitable complex
of A-modules. This paper proves that M is a dualizing complex for A if and only
if the trivial extension A \ltimes M is a Gorenstein Differential Graded
Algebra. As a corollary follows that A has a dualizing complex if and only if
it is a quotient of a Gorenstein local Differential Graded Algebra.Comment: 9 pages. To appear in Fundamenta Mathematica
Recognizing Image Style
The style of an image plays a significant role in how it is viewed, but style
has received little attention in computer vision research. We describe an
approach to predicting style of images, and perform a thorough evaluation of
different image features for these tasks. We find that features learned in a
multi-layer network generally perform best -- even when trained with object
class (not style) labels. Our large-scale learning methods results in the best
published performance on an existing dataset of aesthetic ratings and
photographic style annotations. We present two novel datasets: 80K Flickr
photographs annotated with 20 curated style labels, and 85K paintings annotated
with 25 style/genre labels. Our approach shows excellent classification
performance on both datasets. We use the learned classifiers to extend
traditional tag-based image search to consider stylistic constraints, and
demonstrate cross-dataset understanding of style
Recognizing Uncertainty in Speech
We address the problem of inferring a speaker's level of certainty based on
prosodic information in the speech signal, which has application in
speech-based dialogue systems. We show that using phrase-level prosodic
features centered around the phrases causing uncertainty, in addition to
utterance-level prosodic features, improves our model's level of certainty
classification. In addition, our models can be used to predict which phrase a
person is uncertain about. These results rely on a novel method for eliciting
utterances of varying levels of certainty that allows us to compare the utility
of contextually-based feature sets. We elicit level of certainty ratings from
both the speakers themselves and a panel of listeners, finding that there is
often a mismatch between speakers' internal states and their perceived states,
and highlighting the importance of this distinction.Comment: 11 page
On recognizing inflation
Forecasters experienced considerable difficulty in recognizing rising inflation and predicting its intensity in 1972-82. Possible explanations discussed are: 1) unpredictable supply shocks, 2) excessive attention to nonmonetary developments, and 3) actual money growth overshooting its targeted growth rate.Inflation (Finance) ; Forecasting
Recognizing point clouds using conditional random fields
Detecting objects in cluttered scenes is a necessary step for many robotic tasks and facilitates the interaction of the robot with its environment. Because of the availability of efficient 3D sensing devices as the Kinect, methods for the recognition of objects in 3D point clouds have gained importance during the last years. In this paper, we propose a new supervised learning approach for the recognition of objects from 3D point clouds using Conditional Random Fields, a type of discriminative, undirected probabilistic graphical model. The various features and contextual relations of the objects are described by the potential functions in the graph. Our method allows for learning and inference from unorganized point clouds of arbitrary sizes and shows significant benefit in terms of computational speed during prediction when compared to a state-of-the-art approach based on constrained optimization.Peer ReviewedPostprint (author’s final draft
Efficient Algorithms for Morphisms over Omega-Regular Languages
Morphisms to finite semigroups can be used for recognizing omega-regular
languages. The so-called strongly recognizing morphisms can be seen as a
deterministic computation model which provides minimal objects (known as the
syntactic morphism) and a trivial complementation procedure. We give a
quadratic-time algorithm for computing the syntactic morphism from any given
strongly recognizing morphism, thereby showing that minimization is easy as
well. In addition, we give algorithms for efficiently solving various decision
problems for weakly recognizing morphisms. Weakly recognizing morphism are
often smaller than their strongly recognizing counterparts. Finally, we
describe the language operations needed for converting formulas in monadic
second-order logic (MSO) into strongly recognizing morphisms, and we give some
experimental results.Comment: Full version of a paper accepted to FSTTCS 201
Recognizing Degraded Handwritten Characters
In this paper, Slavonic manuscripts from the 11th
century written in Glagolitic script are
investigated. State-of-the-art optical character recognition methods produce poor results
for degraded handwritten document images. This is largely due to a lack of suitable
results from basic pre-processing steps such as binarization and image segmentation.
Therefore, a new, binarization-free approach will be presented that is independent of
pre-processing deficiencies. It additionally incorporates local information in order to
recognize also fragmented or faded characters. The proposed algorithm consists of
two steps: character classification and character localization. Firstly scale invariant
feature transform features are extracted and classified using support vector machines.
On this basis interest points are clustered according to their spatial information. Then,
characters are localized and eventually recognized by a weighted voting scheme of
pre-classified local descriptors. Preliminary results show that the proposed system can
handle highly degraded manuscript images with background noise, e.g. stains, tears,
and faded characters
Recognizing Treelike k-Dissimilarities
A k-dissimilarity D on a finite set X, |X| >= k, is a map from the set of
size k subsets of X to the real numbers. Such maps naturally arise from
edge-weighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y) is
defined to be the total length of the smallest subtree of T with leaf-set Y .
In case k = 2, it is well-known that 2-dissimilarities arising in this way can
be characterized by the so-called "4-point condition". However, in case k > 2
Pachter and Speyer recently posed the following question: Given an arbitrary
k-dissimilarity, how do we test whether this map comes from a tree? In this
paper, we provide an answer to this question, showing that for k >= 3 a
k-dissimilarity on a set X arises from a tree if and only if its restriction to
every 2k-element subset of X arises from some tree, and that 2k is the least
possible subset size to ensure that this is the case. As a corollary, we show
that there exists a polynomial-time algorithm to determine when a
k-dissimilarity arises from a tree. We also give a 6-point condition for
determining when a 3-dissimilarity arises from a tree, that is similar to the
aforementioned 4-point condition.Comment: 18 pages, 4 figure
- …
