1,457,878 research outputs found

    Recognizing dualizing complexes

    Full text link
    Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. This paper proves that M is a dualizing complex for A if and only if the trivial extension A \ltimes M is a Gorenstein Differential Graded Algebra. As a corollary follows that A has a dualizing complex if and only if it is a quotient of a Gorenstein local Differential Graded Algebra.Comment: 9 pages. To appear in Fundamenta Mathematica

    Recognizing Image Style

    Full text link
    The style of an image plays a significant role in how it is viewed, but style has received little attention in computer vision research. We describe an approach to predicting style of images, and perform a thorough evaluation of different image features for these tasks. We find that features learned in a multi-layer network generally perform best -- even when trained with object class (not style) labels. Our large-scale learning methods results in the best published performance on an existing dataset of aesthetic ratings and photographic style annotations. We present two novel datasets: 80K Flickr photographs annotated with 20 curated style labels, and 85K paintings annotated with 25 style/genre labels. Our approach shows excellent classification performance on both datasets. We use the learned classifiers to extend traditional tag-based image search to consider stylistic constraints, and demonstrate cross-dataset understanding of style

    Recognizing Uncertainty in Speech

    Get PDF
    We address the problem of inferring a speaker's level of certainty based on prosodic information in the speech signal, which has application in speech-based dialogue systems. We show that using phrase-level prosodic features centered around the phrases causing uncertainty, in addition to utterance-level prosodic features, improves our model's level of certainty classification. In addition, our models can be used to predict which phrase a person is uncertain about. These results rely on a novel method for eliciting utterances of varying levels of certainty that allows us to compare the utility of contextually-based feature sets. We elicit level of certainty ratings from both the speakers themselves and a panel of listeners, finding that there is often a mismatch between speakers' internal states and their perceived states, and highlighting the importance of this distinction.Comment: 11 page

    On recognizing inflation

    Get PDF
    Forecasters experienced considerable difficulty in recognizing rising inflation and predicting its intensity in 1972-82. Possible explanations discussed are: 1) unpredictable supply shocks, 2) excessive attention to nonmonetary developments, and 3) actual money growth overshooting its targeted growth rate.Inflation (Finance) ; Forecasting

    Recognizing point clouds using conditional random fields

    Get PDF
    Detecting objects in cluttered scenes is a necessary step for many robotic tasks and facilitates the interaction of the robot with its environment. Because of the availability of efficient 3D sensing devices as the Kinect, methods for the recognition of objects in 3D point clouds have gained importance during the last years. In this paper, we propose a new supervised learning approach for the recognition of objects from 3D point clouds using Conditional Random Fields, a type of discriminative, undirected probabilistic graphical model. The various features and contextual relations of the objects are described by the potential functions in the graph. Our method allows for learning and inference from unorganized point clouds of arbitrary sizes and shows significant benefit in terms of computational speed during prediction when compared to a state-of-the-art approach based on constrained optimization.Peer ReviewedPostprint (author’s final draft

    Efficient Algorithms for Morphisms over Omega-Regular Languages

    Get PDF
    Morphisms to finite semigroups can be used for recognizing omega-regular languages. The so-called strongly recognizing morphisms can be seen as a deterministic computation model which provides minimal objects (known as the syntactic morphism) and a trivial complementation procedure. We give a quadratic-time algorithm for computing the syntactic morphism from any given strongly recognizing morphism, thereby showing that minimization is easy as well. In addition, we give algorithms for efficiently solving various decision problems for weakly recognizing morphisms. Weakly recognizing morphism are often smaller than their strongly recognizing counterparts. Finally, we describe the language operations needed for converting formulas in monadic second-order logic (MSO) into strongly recognizing morphisms, and we give some experimental results.Comment: Full version of a paper accepted to FSTTCS 201

    Recognizing Degraded Handwritten Characters

    Get PDF
    In this paper, Slavonic manuscripts from the 11th century written in Glagolitic script are investigated. State-of-the-art optical character recognition methods produce poor results for degraded handwritten document images. This is largely due to a lack of suitable results from basic pre-processing steps such as binarization and image segmentation. Therefore, a new, binarization-free approach will be presented that is independent of pre-processing deficiencies. It additionally incorporates local information in order to recognize also fragmented or faded characters. The proposed algorithm consists of two steps: character classification and character localization. Firstly scale invariant feature transform features are extracted and classified using support vector machines. On this basis interest points are clustered according to their spatial information. Then, characters are localized and eventually recognized by a weighted voting scheme of pre-classified local descriptors. Preliminary results show that the proposed system can handle highly degraded manuscript images with background noise, e.g. stains, tears, and faded characters

    Recognizing Treelike k-Dissimilarities

    Full text link
    A k-dissimilarity D on a finite set X, |X| >= k, is a map from the set of size k subsets of X to the real numbers. Such maps naturally arise from edge-weighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y) is defined to be the total length of the smallest subtree of T with leaf-set Y . In case k = 2, it is well-known that 2-dissimilarities arising in this way can be characterized by the so-called "4-point condition". However, in case k > 2 Pachter and Speyer recently posed the following question: Given an arbitrary k-dissimilarity, how do we test whether this map comes from a tree? In this paper, we provide an answer to this question, showing that for k >= 3 a k-dissimilarity on a set X arises from a tree if and only if its restriction to every 2k-element subset of X arises from some tree, and that 2k is the least possible subset size to ensure that this is the case. As a corollary, we show that there exists a polynomial-time algorithm to determine when a k-dissimilarity arises from a tree. We also give a 6-point condition for determining when a 3-dissimilarity arises from a tree, that is similar to the aforementioned 4-point condition.Comment: 18 pages, 4 figure
    corecore