1,832,128 research outputs found

    A framework for forensic face recognition based on recognition performance calibrated for the quality of image pairs

    Get PDF
    Recently, it has been shown that performance of a face recognition system depends on the quality of both face images participating in the recognition process: the reference and the test image. In the context of forensic face recognition, this observation has two implications: a) the quality of the trace (extracted from CCTV footage) constrains the performance achievable using a particular face recognition system; b) the quality of the suspect reference set (to which the trace is matched against) can be judiciously chosen to approach optimal recognition performance under such a constraint. Motivated by these recent findings, we propose a framework for forensic face recognition that is based on calibrating the recognition performance for the quality of pairs of images. The application of this framework to several mock-up forensic cases, created entirely from the MultiPIE dataset, shows that optimal recognition performance, under such a constraint, can be achieved by matching the quality (pose, illumination, and, imaging device) of the reference set to that of the trace. This improvement in recognition performance helps reduce the rate of misleading interpretation of the evidence

    Forensic Face Recognition: A Survey

    Get PDF
    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is the forensic experts‟ way of manual facial comparison. Then we review famous works in the domain of forensic face recognition. Some of these papers describe general trends in forensics [1], guidelines for manual forensic facial comparison and training of face examiners who will be required to verify the outcome of automatic forensic face recognition system [2]. Some proposes theoretical framework for application of face recognition technology in forensics [3] and automatic forensic facial comparison [4, 5]. Bayesian framework is discussed in detail and it is elaborated how it can be adapted to forensic face recognition. Several issues related with court admissibility and reliability of system are also discussed. \ud Until now, there is no operational system available which automatically compare image of a suspect with mugshot database and provide result usable in court. The fact that biometric face recognition can in most cases be used for forensic purpose is true but the issues related to integration of technology with legal system of court still remain to be solved. There is a great need for research which is multi-disciplinary in nature and which will integrate the face recognition technology with existing legal systems. In this report we present a review of the existing literature in this domain and discuss various aspects and requirements for forensic face recognition systems particularly focusing on Bayesian framework

    Unsupervised learning of categorical segments in image collections

    Get PDF
    Which one comes first: segmentation or recognition? We propose a probabilistic framework for carrying out the two simultaneously. The framework combines an LDA ‘bag of visual words’ model for recognition, and a hybrid parametric-nonparametric model for segmentation. If applied to a collection of images, our framework can simultaneously discover the segments of each image, and the correspondence between such segments. Such segments may be thought of as the ‘parts’ of corresponding objects that appear in the image collection. Thus, the model may be used for learning new categories, detecting/classifying objects, and segmenting images

    A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Get PDF
    Using Hidden Markov Models (HMMs) as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks
    corecore