191,712 research outputs found
Idealized computational models for auditory receptive fields
This paper presents a theory by which idealized models of auditory receptive
fields can be derived in a principled axiomatic manner, from a set of
structural properties to enable invariance of receptive field responses under
natural sound transformations and ensure internal consistency between
spectro-temporal receptive fields at different temporal and spectral scales.
For defining a time-frequency transformation of a purely temporal sound
signal, it is shown that the framework allows for a new way of deriving the
Gabor and Gammatone filters as well as a novel family of generalized Gammatone
filters, with additional degrees of freedom to obtain different trade-offs
between the spectral selectivity and the temporal delay of time-causal temporal
window functions.
When applied to the definition of a second-layer of receptive fields from a
spectrogram, it is shown that the framework leads to two canonical families of
spectro-temporal receptive fields, in terms of spectro-temporal derivatives of
either spectro-temporal Gaussian kernels for non-causal time or the combination
of a time-causal generalized Gammatone filter over the temporal domain and a
Gaussian filter over the logspectral domain. For each filter family, the
spectro-temporal receptive fields can be either separable over the
time-frequency domain or be adapted to local glissando transformations that
represent variations in logarithmic frequencies over time. Within each domain
of either non-causal or time-causal time, these receptive field families are
derived by uniqueness from the assumptions.
It is demonstrated how the presented framework allows for computation of
basic auditory features for audio processing and that it leads to predictions
about auditory receptive fields with good qualitative similarity to biological
receptive fields measured in the inferior colliculus (ICC) and primary auditory
cortex (A1) of mammals.Comment: 55 pages, 22 figures, 3 table
Invariance of visual operations at the level of receptive fields
Receptive field profiles registered by cell recordings have shown that
mammalian vision has developed receptive fields tuned to different sizes and
orientations in the image domain as well as to different image velocities in
space-time. This article presents a theoretical model by which families of
idealized receptive field profiles can be derived mathematically from a small
set of basic assumptions that correspond to structural properties of the
environment. The article also presents a theory for how basic invariance
properties to variations in scale, viewing direction and relative motion can be
obtained from the output of such receptive fields, using complementary
selection mechanisms that operate over the output of families of receptive
fields tuned to different parameters. Thereby, the theory shows how basic
invariance properties of a visual system can be obtained already at the level
of receptive fields, and we can explain the different shapes of receptive field
profiles found in biological vision from a requirement that the visual system
should be invariant to the natural types of image transformations that occur in
its environment.Comment: 40 pages, 17 figure
Conjunctive Chain Modification to the Boundary Contour System Neural Vision Model
The Boundary Contour System neural vision model reproduces perceptual illusory boundary formation by a conjunctive boundary completion process within a large cellular receptive field. The conjunctive chain allows the same kind of conjunction to occur across multiple receptive fields, which allows for sharper, more flexible boundary completion
A Neural Model for Self Organizing Feature Detectors and Classifiers in a Network Hierarchy
Many models of early cortical processing have shown how local learning rules can produce efficient, sparse-distributed codes in which nodes have responses that are statistically independent and low probability. However, it is not known how to develop a useful hierarchical representation, containing sparse-distributed codes at each level of the hierarchy, that incorporates predictive feedback from the environment. We take a step in that direction by proposing a biologically plausible neural network model that develops receptive fields, and learns to make class predictions, with or without the help of environmental feedback. The model is a new type of predictive adaptive resonance theory network called Receptive Field ARTMAP, or RAM. RAM self organizes internal category nodes that are tuned to activity distributions in topographic input maps. Each receptive field is composed of multiple weight fields that are adapted via local, on-line learning, to form smooth receptive ftelds that reflect; the statistics of the activity distributions in the input maps. When RAM generates incorrect predictions, its vigilance is raised, amplifying subtractive inhibition and sharpening receptive fields until the error is corrected. Evaluation on several classification benchmarks shows that RAM outperforms a related (but neurally implausible) model called Gaussian ARTMAP, as well as several standard neural network and statistical classifters. A topographic version of RAM is proposed, which is capable of self organizing hierarchical representations. Topographic RAM is a model for receptive field development at any level of the cortical hierarchy, and provides explanations for a variety of perceptual learning data.Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409
Central auditory neurons have composite receptive fields
High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes
Information Optimization in Coupled Audio-Visual Cortical Maps
Barn owls hunt in the dark by using cues from both sight and sound to locate
their prey. This task is facilitated by topographic maps of the external space
formed by neurons (e.g., in the optic tectum) that respond to visual or aural
signals from a specific direction. Plasticity of these maps has been studied in
owls forced to wear prismatic spectacles that shift their visual field.
Adaptive behavior in young owls is accompanied by a compensating shift in the
response of (mapped) neurons to auditory signals. We model the receptive fields
of such neurons by linear filters that sample correlated audio-visual signals,
and search for filters that maximize the gathered information, while subject to
the costs of rewiring neurons. Assuming a higher fidelity of visual
information, we find that the corresponding receptive fields are robust and
unchanged by artificial shifts. The shape of the aural receptive field,
however, is controlled by correlations between sight and sound. In response to
prismatic glasses, the aural receptive fields shift in the compensating
direction, although their shape is modified due to the costs of rewiring.Comment: 7 pages, 1 figur
- …
