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High-level neurons processing complex, behaviorally relevant sig-
nals are sensitive to conjunctions of features. Characterizing the
receptive fields of such neurons is difficult with standard statistical
tools, however, and the principles governing their organization
remain poorly understood. Here, we demonstrate multiple distinct
receptive-field features in individual high-level auditory neurons in
a songbird, European starling, in response to natural vocal signals
(songs). We then show that receptive fields with similar charac-
teristics can be reproduced by an unsupervised neural network
trained to represent starling songs with a single learning rule that
enforces sparseness and divisive normalization. We conclude that
central auditory neurons have composite receptive fields that can
arise through a combination of sparseness and normalization in
neural circuits. Our results, along with descriptions of random,
discontinuous receptive fields in the central olfactory neurons in
mammals and insects, suggest general principles of neural compu-
tation across sensory systems and animal classes.

auditory system | neural networks | receptive fields | sparseness |
unsupervised learning

Introduction
How neurons efficiently represent multidimensional stimuli is
an important question in sensory neuroscience. Dimensionality
reduction involves extracting a hierarchy of features to obtain
a selective and invariant (categorical) representation useful for
behavior. To understand better the principles underlying this
process in the central auditory system, we characterized recep-
tive fields of neurons in the caudo-medial nidopallium (NCM)
of the European starling (Sturnus vulgaris), a songbird with an
acoustically rich vocal repertoire (1). The NCM, a secondary au-
ditory cortex-like region in songbirds, receives convergent inputs
from the primary thalamorecipient region, Field L, and other
secondary auditory regions (2), and contains neurons selectively
tuned to birdsong, a behaviorally relevant natural stimulus (3–5).

We recorded action potentials extracellularly from individual
well-isolated NCM neurons during the playback of starling songs,
and estimated the structure of the neurons’ receptive fields using
the Maximum Noise Entropy (MNE) method (6). Statistical in-
ference methods in this class (7, 8) maximize the noise entropy
of the conditional response distribution to produce models that
are constrained by a given set of stimulus-response correlations
but that are otherwise as random, and therefore as unbiased, as
possible. Unlike the spike-triggered covariance (STC) method
(9), MNE works well with natural stimuli; in contrast to the
maximally informative dimensions (MID)method (10),MNE can
identify any number of relevant receptive-field features.

Results
Single NCM neurons respond to multiple distinct features of starling
song

We recorded neuronal responses to six different one-minute
long songs, each repeated 30 times. These songs were recorded
from three male starlings, and together they contained over two
hundredmotifs, brief segments of starling song that are perceived
as distinct auditory objects (11). An NCM neuron usually re-

sponds to a variety of motifs (4, 12) (Figure 1), and NCMneurons
display rapid stimulus-specific adaptation (13), suggesting that
an individual neuron can be sensitive to a variety of different
stimulus features.

To examine whether single NCM neurons respond to mul-
tiple distinct features of starling song, we obtained significant
eigenvectors of the second-order MNE model’s matrix J for each
neuron that together with the first-order kernel (see Methods)
define its receptive field (Figure 2). On average, NCM neurons’
receptive fields (n = 37 neurons) contained six excitatory fea-
tures, or negative eigenvalues of the matrix J, (6.43 ± 2.06,
range 2-11, interquartile range 5-8) and six supressive features,
or positive eigenvalues of the matrix J, (6.35 ± 2.41, range 3-12,
interquartile range 5-7). As a control, we also determined the
number of features using all possible five-song subsets of the six-
song set. The distributions of significant features obtained using
five or six songs were not statistically different (Kolmogorov-
Smirnov test, p = 0.3 and p = 0.2 for the negative and positive
eigenvalues, respectively). Using many more songs, however,
did reveal additional features (see below). The features of each
neuron’s receptive field were spectro-temporally diverse: the neu-
rons typically combined broadband features resembling clicks,
and narrowband features resembling tones, or harmonic stacks.
The spectral and temporal statistics of the ensemble of features
was captured using the modulation power spectrum (14) (Figure
3). Thus, we found multiple, distinct receptive-field features in
individual high-level auditory neurons in response to natural

Significance

How neurons are selective for complex natural stimuli remains
poorly understood, in part because standard statistical tools
only identify one or two features of stimuli but not complete
sets. Here, using a statistical method that overcomes these
difficulties, we demonstrate that a set of multiple distinct
acoustical features exists in individual auditory neurons in
songbirds. We then use birdsongs to train an unsupervised
neural network constrained by two common properties of
biological neural circuits. The network rediscovers the same
stimulus features observed in vivo. These results demonstrate
that individual high-level auditory neurons respond not to
single, but to multiple features of natural stimuli. This enables
a robust, statistically optimal, representation of complex, real-
world signals such as birdsong, speech or music.
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Submission PDFFig. 1. A single NCM neuron responds to several
different motifs. (A) Spike raster plot (top), peri-
stimulus histogram (middle) and spectrogram (bot-
tom) showing an example NCM neuron’s response to
a full song. (B) Four three-second-long excerpts taken
at the indicated times from the response shown in
(A). The different panels show the neuron responding
to acoustically distinct motifs (harmonic stacks, clicks,
and other broadband stimuli), supporting the idea
that individual NCM neurons can be sensitive to a
variety of different stimulus features.

Fig. 2. Composite receptive field of a single NCM neuron. (A) Examples of
multiple excitatory and suppressive features obtained from one NCM neuron.
The top two rows show the negative (excitatory) features. In this neuron,
eight negative eigenvalues were significant. The largest non-significant
eigenvector is also displayed to the right of the dotted line in row two and
can be seen to contain structure. Eigenvectors corresponding to even smaller
eigenvalues (not shown) contained no clear structure. The two bottom rows
show nine significant positive (suppressive) features. (B) Eigenspectrum of
the matrix J for the same neuron as in (A). Eigenvalues were normalized for
comparison with the data in Figure 6B. The dashed lines indicate the two
largest (in absolute value) positive and negative eigenvalues obtained from
500 symmetrical Gaussian random matrices with the same mean and variance
as those of J.

Fig. 3. Capturing the statistics of feature ensembles. Projections of mod-
ulation power spectra for starling songs (green), MNE features (red) and
artificial neural network features (black) on spectral (left) and temporal
(right) axes.

stimuli. To reflect their multi-feature composition, we call these
receptive fields composite.

To verify the model’s ability to predict responses to new
stimuli, we estimated its parameters for each neuron using all
possible five-song subsets, and generated a prediction of the
probability of a spike for each time bin of each of the remain-
ing songs (see Methods). The correlation coefficients between
the predicted and the measured responses ranged from zero
(as not every song evoked a response in every neuron) to 0.8,
with the average correlation of 0.23 ± 0.2 and the interquartile
range of 0.06-0.36 (Figure 4). Similar ranges of correlation values
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Fig. 4. Prediction of responses to new stimuli. (A) The empirically measured
time-varying average spike rate (blue) and the MNE-predicted spike rate
(red) for a single neuron’s response to a song. The correlation coefficient be-
tween the measured and predicted response was 0.56. The number of spikes
in each time bin was normalized by the number of stimulus repetitions. (B)
Full distribution of correlation coefficients obtained with the second-order
MNE model plotted against those obtained with the STRF. The diagonal line
indicates unity.

were reported using other methods (in particular, the Spectro-
Temporal Receptive Field, or STRF) in the auditory forebrain of
the zebra finch and starling (15, 16). To compare the two models
(MNE and STRF) directly on our data set, we obtained STRFs
for all the neurons in our sample using the widely used strfpak
package (15). The STRF model provided significantly poorer
predictions of responses to songs than the second-order MNE
model (p=1.4·10-5 with paired t-test, Figure 4B): the average
correlation between the STRF-prediction and the actual response
was 0.16 ± 0.13 and the interquartile range was 0.06-0.23. Only 14
values (6%) obtained with the STRFmodel were equal or greater
than 0.4, compared to four times as many (51 values, 23%) ob-
tained with the MNE model. No correlation coefficients greater
than 0.6 were obtained with the STRF model, whereas the MNE
model produced 15 values greater than 0.6. Although the average
values of the correlation coefficients indicate that bothmodels are
incomplete descriptions of theNCMneurons’ receptive fields, the
MNE model revealed for the first time multiple receptive-field
features in individual neurons responding to natural stimuli.

The composite receptive fields comprise multiple features of
similar strength

The function of the composite receptive fields must depend
on the relative strength of component features. In this regard, it is
noteworthy that eigenvalues of thematrix J, which defines feature
strength, were of the same order of magnitude. For example, the

Fig. 5. Composite receptive fields from larger data sets. (A) Examples of
excitatory and suppressive features obtained from an NCM neuron using 60
one-minute-long songs. The top two rows show the nine significant excita-
tory features, and the two bottom rows show seven significant suppressive
features. Two largest non-significant eigenvectors are also displayed (right-
hand side of dotted line) and can be seen to contain structure and not only
noise. (B) Eigenspectrum of the matrix J for the neuron in (A). Eigenvalues
were normalized for comparison with the data in Figure 6B. The dashed lines
indicate the two largest (in absolute value) positive and negative eigenvalues
obtained from 500 symmetrical Gaussian random matrices with the same
mean and variance as those of J.

Fig. 6. Neural network trained on starling songs learns composite receptive
fields.(A) Ten most active features for seven randomly chosen layer-2 units (a
to g). (B) A histogram showing a distribution of the basis features’ activities
for one layer-2 unit. The absolute normalized magnitude is shown for
comparison with the distributions of features’ magnitudes in Figures 2B and
5B. Note that most features are close to zero (lifetime sparseness) and that
the most active features are of the same order of magnitude, as expected. (C)
Cumulative density function (CDF) showing the percentage difference in the
pair-wise magnitude between neighboring most active features of all layer-2
units. Ten largest basis features are selected for each layer-2 unit and sorted
according to their activity (magnitude), then the percent difference is taken
between the neighboring values.

average difference between the ten largest (in absolute magni-
tude) neighboring negative eigenvalues, corresponding to excita-
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tory features, of the neuron in Figure 2 was 7%, and the maximal
difference was 24%. Furthermore, many of the significant eigen-
values were small, i.e., at the border of significance, even though
the associated eigenvectors contained clear structure (Figure 2B).
These observations imply that the auditory neurons’ receptive
fields are not dominated by a single strong feature, but rather
are characterized by a large number of somewhat weaker features
of similar strength. These eigenvalue distributions contrast with
those obtained using the same method from macaque retinal
ganglion cells tuned to few features, where the difference between
neighboring eigenvalues was several hundred percent, and from
model cells with few built-in strong features corresponding to
clearly outstanding eigenvalues (6). They are similar, however, to
eigenvalue distributions obtained using a different method (STC)
and an artificial stimulus—Gaussian noise flicker—in salamander
retinal ganglion cells, which are known to be sensitive to multiple
features (17).

One concern is that the observed similarities in feature
strength reflect limits in the amount of data used to fit the model
rather than the true properties of auditory neurons. To examine
this possibility, we repeated the experiments and analyses using
60 one-minute-long songs, each repeated ten times. We held
some units with an excellent signal-to-noise ratio for ten hours
or longer. We obtained features and eigenspectra from this ten-
hour data set in five neurons (Figure 5), four of which were
also part of the main data set (6 songs repeated 30 times). The
larger dataset allowed us to uncover some additional features
in these neurons: in the same four neurons, we obtained 7.5 ±
2.1 negative and 7.5 ± 3.3 positive features with 6 songs, and
10.8 ± 1.3 negative and 8.3 ± 1.9 positive features with 60 songs
(taking 40 among the 60 songs resulted in 10 ± 2.4 negative
and 7.8 ± 1.7 positive features). To quantify simliary between
features obtained with the two stimulus sets, we computed the
correlation coefficient between each of the 6-song features and
all the features extracted from the 60-song dataset for that same
neuron. Of the 54 features extracted from four neurons using the
6-song dataset, 35 had a correlation coefficient with a 60-song
feature that was significantly greater than expected by chance (see
Methods), indicating they were preserved in the larger dataset. In
addition, the mean similarity between features in the 6- and 60-
song datasets from the same neuron was significantly higher than
the similarity between datasets across neurons (p=0.0011, paired
t-test). This supports the conclusion that large numbers of highly
similar features are preserved between datasets from the same
neuron, and that these features primarily characterize properties
of the neurons rather than the datasets used to obtain them.
Moreover, the same characteristics of the eigenspectra persisted:
eigenvalues of similar magnitude, with the average and maximal
difference between the neighboring eigenvalues being 9% and
30%, and 8% and 15%, for the top ten negative and positive
eigenvalues, respectively (n = 5 neurons). Thus, the composite
receptive-fields of NCM neurons comprise multiple features of
similar strength.

Artificial neural network reproduces these receptive fields using
sparseness and divisive normalization

We next examined whether receptive fields like those ob-
served inNCMneurons could emerge through two encoding prin-
ciples that have been proposed to be important to the function of
neural circuits: sparseness and divisive normalization. Sparseness
is a common property of cortical responses (18), where each
neuron responds only to a small number of all stimuli (lifetime
sparseness), and each stimulus activates only a small fraction of
all neurons in the population (population sparseness). Divisive
normalization, another general principle of neural computation
(19), is the suppression or scaling of one neuron’s activity by
the weighted activity in the circuit. We wondered whether an
artificial neural network with the above constraints (sparseness

and normalization) was able to learn composite receptive fields,
with each unit pooling distinct features of similar strength, as
observed in the biological neurons.

We trained a two-layer neural network using sparse filtering
(20), a recently developed unsupervised learning algorithm (21),
on the same 60 starling songs that we used to obtain the features
in Figure 5, and analyzed the acoustical features represented by
units of this network. Because the principles (the cost function)
that underlie the network’s features are well-understood and
defined mathematically, it can serve as a benchmark represen-
tation to which the biological neurons’ feature distributions can
be compared.

The network had two layers; the input layer (layer 1) learned
basis features that resembled narrowband tones, broadband
clicks, and some more complex structures. The second layer
combined these features. Each layer-2 unit responded to several
different first-layer features, i.e., layer-2 units had composite
receptive fields (Figure 6A). Some layer-2 units had partially
overlapping receptive fields. For example, the units ‘e’ and ‘f’
responded to the same (e.g., e1 and f1) as well as different (e.g.,
e9 and f9) features. This partially overlapping set of features was
reminiscent of the mixture of precisely shared and independent
receptive-field subregions in neighboring neurons in the mouse
visual cortex (22). The population sparseness constraint assured
that only a few basis features were active for each layer-2 unit;
competition between units (normalization) assured that active
features had similar magnitudes (Figure 6B and C). The average
difference between pairs of neighboring units (after sorting all
units according to their activity and selecting ten layer-1 units
with the largest magnitude for each layer-2 unit) was 25%, and
the maximal difference was 84% (Figure 6C). This result accords
with the receptive fields of NCM neurons, in which a few signif-
icant eigenvalues had similar magnitude (Figures 2B and 5B).
The spectro-temporal characteristics captured by these sets of
sparse, evenly strong features matched those observed in the real
neurons and those present in the songs themselves (Figure 3).
Note that the neural network did not explicitly model the stimulus
distribution, but rather reproduced its properties based on the
sparseness and normalization constraints.

Discussion

We have shown that individual high-level auditory neurons in the
starling forebrain possess composite receptive fields comprising
up to a dozen or more independent features of similar magni-
tudes. We then re-discover the distributions of these component
features in an artificial neural network using divisive normaliza-
tion and sparseness, suggesting plausible biological mechanisms
for this composite representation.

The observed diversity and magnitude of features that drive
spiking responses in NCM neurons is hard to reconcile with the
strictest notions of feature selectivity implied by linear receptive
field models and low-dimensional stimulus representations. We
show that the spiking response of a single NCM neuron can
be produced by any one of many independent features. While
problematic at the level of a single neuron considered in isolation,
this encoding scheme could be advantageous at the neuronal
ensemble level because it allows each neuron to participate in
many different ensembles. Computational models suggest that
ensembles composed of diverse receptive fields, such as those
we observed here, are superior for encoding multidimensional
stimuli compared to populations in which each neuron responds
to only a single stimulus (23). Recently, we also showed that the
logical rules underlying the combination of independent inputs
in NCM neurons can vary as a function both of the inputs and
the neuron’s state, sometimes reflecting an AND-like operation,
sometimes anOR-like operation (13). Collectively, it appears that
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individual NCM neurons act as flexible logical gates operating in
a high-dimensional feature space.

Given their benefits, composite receptive fields may be a fun-
damental property of sensory systems that flexibly map diverse,
multi-dimensional stimuli onto different behaviors. In support of
this notion, composite receptive fields have also been identified
in high-order olfactory neurons in mammals and insects (24, 25).
In the olfactory system, because the number of odorants and
odors that an individual may experience is very large and their
identity can not be predicted a priori, randomprojections ofmitral
cells in the olfactory bulb to pyramidal neurons in the piriform
cortex is considered a good unbiased starting point, from which
learning then carves the associative networks (24, 26). In contrast,
olfactory circuits mediating responses to pheromones, which are
conserved evolutionarily and highly species-specific, are precisely
wired and the associated receptive fields are specific (26). Like the
space of possible odors, the learned vocal repertoires of starlings
and many other songbirds are large and unpredictable. Each
adult starling has several dozen distinct motifs in its repertoire,
most of which are unique to that bird, and the behavioral signif-
icance of these signals varies according to the idiosyncratic life
history of both the singer and each listener (1). It is noteworthy
that in both the associative olfactory centers and in high-order
auditory neurons the representation of multi-dimensional and
unpredictable natural stimuli is associated with the presence of
composite receptive fields. Functionally similar properties have
also been identified in prefrontal cortex, where many neurons are
tuned to mixtures of multiple task-related aspects, and this so-
called “mixed selectivity” has been suggested to be a hallmark of
brain structures involved in cognition (27).

We also demonstrate how the observed composite receptive
fields could emerge in sensory networks. Both the neural network
trained in this study, and the neurons in the starlings’ brains
display receptive fields that capture the statistics of the starling
song. Unsupervised learning algorithms in general can produce
statistically optimal representations of complex inputs (28, 29),
and have been used successfully to model simple-cell receptive
fields in primary visual cortex (30) and auditory responses in
the cochlear nerve (31). The success of both these efficient sen-
sory encoding models is directly based on the maximization of
sparseness in the underlying algorithms. We show that the same
constraint of sparseness, coupled with divisive normalization be-
tween units within each network layer, yields representations with
receptive fields composed of several distinct features of similar
magnitude. Thus, these processes may be general constraints that
shape information processing across multiple neuronal stages.
A key question for future research is to understand both the
implementation of sparseness (18) and normalization in sensory
neural circuits, and the functional significance of discontinuous,
composite, and apparently random receptive fields in songbirds
and other animals. The success of random projections for di-
mensionality reduction, e.g., in compressed sensing and machine
learning (32–34), provides useful frameworks for this research.

Methods
Spike recording and sorting

Under a protocol approved by the Institutional Animal Care and Use
Committee of the University of California, San Diego, we performed exper-
iments on adult male European starlings (Sturnus vulgaris). We obtained
stimuli for the experiments by recording songs from adult male starlings
(unfamiliar to the test subjects) inside a sound attenuation box (Acoustic
Systems, Austin, TX) at 44.1 thousand samples/sec. For physiological testing,
birds were anesthetized (urethane, 7 ml·kg-1) and head-fixed to a stereotaxic
apparatus mounted inside a sound attenuation box. The use of urethane
was necessary to obtain the long stimulus presentation epochs required
in this study and is unlikely to alter selectivity significantly (15, 16). Songs
were played to the subjects at 60 dB mean-level while we recorded action
potentials extracellularly using 32-channel electrode arrays (NeuroNexus
Technologies, Ann Arbor, MI) inserted through a small craniotomy into
the NCM. Stimulus presentation, signal recording, and spike sorting were
controlled through a PC using Spike2 software (CED, Cambridge, UK). Ex-

tracellular voltage waveforms were amplified (model 3600 amplifier, A-M
Systems, Sequim WA), filtered and sampled with a 50-µs resolution, and
saved for offline spike sorting. Single units were identified by clustering
principle components of the spike waveforms, only when no violations of the
refractory period (assumed to equal 1 ms) occurred, and only from recordings
with an excellent signal-to-noise ratio (large-amplitude extracellular action-
potential waveforms). All analyses, except for spike sorting, were performed
in Matlab (MathWorks, Natick, MA).

MNE receptive-field analysis
To compute the linear and quadratic features, we downsampled stimuli

to 24 kHz and converted them into spectrograms using spectrogram function
in Matlab with parameters: nfft = 128, Hanning window of length 128, and
a 50% segment overlap. The DC component was removed, and the adjacent
64 frequencies were averaged pair-wise twice to obtain 16 frequency bands
ranging from 750 Hz to the Nyquist frequency (12 kHz). The adjacent time
bins were averaged three times for a final bin size of 21 ms. We typically
used 20 time bins to compute MNE receptive fields (both the linear and
quadratic features). Using stimuli with 32 instead of 16 frequencies, or
smaller time bins, or a different number of time bins (10, 16, 32) to compute
receptive fields gave similar results. The spectrograms were converted into
the logarithmic scale.

A full description of the MNE model is given in reference (6). Briefly, the
minimal model describes the probability of a spike, given a stimulus s (e.g.,

a song spectrogram), as , which is a logistic
function with parameters a, h and J determined to satisfy the mean firing
rate and the correlations with the first and second moments of the stimulus,
respectively (6). Data were divided into two sets for training and testing; the
testing set contained one-quarter of the data. Parameters were estimated
four times, each time using a different segment of data for training and
testing, and averaged. Early stopping was used for regularization to prevent
overfitting. As in STC, diagonalizing the matrix J yields quadratic features
with the same time and frequency dimensions as the original stimuli that
drove spiking. To test significance, the eigenvalues of J were compared to
those obtained from a randomly reshuffled J matrix. As a second test of the
eigenvalues’ significance, we constructed 500 symmetrical Gaussian random
matrices with the same mean and variance as those of J and obtained a
distribution of their eigenvalues. Eigenvalues of J were considered significant
if they were outside of this distribution. The two approaches resulted in the
same, or similar, numbers of significant eigenvalues. When the numbers were
not the same (and they never differed by more than 1), we conservatively
chose the smaller number.

To test how well the model predicted responses to new stimuli, we
obtained the parameters a, h and J for each neuron using all subsets of
five among the six songs, and generated a prediction of the response to the
remaining sixth song not used in the parameter estimation. This prediction
was then compared to the actual response to that song using the Matlab
corrcoef function.

Feature similarity
For a subset of neurons, we computed the correlation coefficient (CC)

between each feature extracted from the 6-song dataset and each feature
extracted from the 60-song dataset for that same neuron. We count a 6-
song feature as “preserved” in the larger dataset if the correlation coefficient
between it and any feature in the 60-song set exceeds the bounds of the
95% confidence for all CCs between 6-song and 60-song features from that
neuron. We quantified feature similarity directly by computing the absolute
value of the correlation coefficient between each of the 54 features from
the 6-song dataset and each of the 73 features from the 60-song datasets
for all neurons in which they were obtained (n = 4). We used the absolute
value of the CC because the features are quadratic; the same feature can
appear in different datasets as spectrograms with opposite polarity (i.e.,
with the red and the blue regions reversed). We considered the CC with
the largest absolute value among all the features from the 60-song dataset
from the same neuron to be the best within-cell match, and the average of
the CCs with the largest absolute value among the features in each of the
60-song datasets obtained from different cells to be the best between-cell
match. We then compared the best within-cell match to the best between-
cell match for each 6-song feature using a paired t-test. Although our analysis
shows that similar features are maintained across datasets from the same cell,
both the preservation of (comparatively stronger) features and the loss of
(comparatively weaker) features are expected as songs from new birds are
added. Because all features are not independent and must be orthogonal,
if a new strong feature appears that is not orthogonal to an existing weak
feature, the weak feature will change. As more data are added, the basis
vectors have to change to remain orthogonal.

Unsupervised neural network
The network was forced to construct a compact representation of star-

ling song by learning features based on the song statistics and subject to two
constraints. First, only a small fraction of units should be active at any time
(population sparseness). Second, all units should compete with each other
and therefore be approximately equally active (high dispersal). As a result
of this competition—akin to divisive normalization in neural circuits—in
conjunction with the population sparseness constraint, any individual unit
was active only rarely (lifetime sparseness). These three characteristics: pop-
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ulation sparseness, lifetime sparseness, and normalization are typical of
neuronal activity in the cortex. To implement the network, we used the code
from Ngiam et al. (2011) (20), which is freely available. Briefly, the sparse
filtering objective (Eq. 1 in Ngiam et al. (2011)) first normalizes features by
dividing them by their l2-norms over all training examples to assure that
they are equally active and lie on the unit l2-ball (a sphere of unit radius),
and then it minimizes the l1-norm of the normalized features over the set
of examples to optimize for sparseness. See Ngiam et al. (2011) (20) for
a detailed description. The algorithm has only one hyperparameter, the
number of features to learn. We tried values between 100 and 256 for both
layers and consistently obtained the same features; the final results were

obtained with 100 target features. The first layer was trained on starling
songs converted into log-spectrograms. The second layer was trained on the
normalized first-layer features, using a greedy layer-wise stacking commonly
employed in deep neural architectures (35).
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