1,044,589 research outputs found
Digital receiver simulation
Digital simulation of the data link for the Saturn-Uranus spacecraft design is summarized. The data link is a 40 watt, 400 MegaHertz, 44 bit-a-second link, a power starved link, and uses convolution coding. Aspects of the link of particular interest are atmospheric scintillation and the Doppler to data rate ratio. The major characteristics of the scintillation are modeled in terms of tapped delay lines. A candidate system design and receiver design is developed. A computer flow diagram depicting a routine for the error rate and one for acquisition is presented. Various coding algorithms are analyzed since the convolution code is sensitive to the distribution of error and the actual pattern of the error
Solar thermal energy receiver
A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity
A Low Noise Receiver for Submillimeter Astronomy
A broadband, low noise heterodyne receiver, suitable for astronomical use, has been built using a Pb alloy superconducting tunnel junction (SIS). The RF coupling is quasioptical via a bowtie antenna on a quartz lens and is accomplished without any tuning elements. In its preliminary version the double sideband receiver noise temperature rises from 205 K at 116 GHz to 815 K at 466 GHz. This is the most sensitive broadband receiver yet reported for sub-mm wavelengths. Its multi-octave sensitivity and low local oscillator power requirements make this receiver ideal for remote ground observatories or space-borne telescopes such as NASA's Large Deployable Reflector. A version of this receiver is now being built for NASA's Kuiper Airborne Observatory
Performance testing of lidar receivers
In addition to the considerations about the different types of noise sources, dynamic range, and linearity of a lidar receiver, one requires information about the pulse shape retaining capabilities of the receiver. For this purpose, relatively precise information about the height resolution as well as the recovery time of the receiver, due both to large transients and to fast changes in the received signal, is required. As more and more analog receivers using fast analog to digital converters and transient recorders will be used in the future lidar systems, methods to test these devices are essential. The method proposed for this purpose is shown. Tests were carried out using LCW-10, LT-20, and FTVR-2 as optical parts of the optical pulse generator circuits. A commercial optical receiver, LNOR, and a transient recorder, VK 220-4, were parts of the receiver system
Redundant RF system for space application
An S-band radio frequency subsystem is described including two transmitters, two receivers and two antennas. The subsystem is capable of connecting either transmitter or receiver to either antenna while permitting simultaneous operation of a transmitter and a receiver. Circulator switches provide selection of a specific transmitter and receiver for connection to either a high gain or low gain antenna. Transmitter output filters, receiver input filters, and diplexers are combined to prevent radiation or coupling or unwanted transmitter and receiver signals and to provide isolation, permitting simultaneous operation of the transmitter and receiver. The filter elements are designed of constant diameter coaxial elements to meet demanding rejection, loss, power-handling and environmental characteristics
A nonlinear-coherence receiver
Mathematical analysis and detailed study of generic model for coherent receiver has demonstrated that nonlinear coherence between given biphase-modulated input signal and supplied reference signal can be used in receivers to improve telecommunication systems
Basis Pursuit Receiver Function
Receiver functions (RFs) are derived by deconvolution of the horizontal (radial or transverse) component of ground motion from the vertical component, which segregates the PS phases. Many methods have been proposed to employ deconvolution in frequency as well as in time domain. These methods vary in their approaches to impose regularization that addresses the stability problem. Here, we present application of a new time-domain deconvolution technique called basis pursuit deconvolution (BPD) that has recently been applied to seismic exploration data. Unlike conventional deconvolution methods, the BPD uses an L1 norm constraint on model reflectivity to impose sparsity. In addition, it uses an overcomplete wedge dictionary based on a dipole reflectivity series to define model constraints, which can achieve higher resolution than that obtained by the traditional methods. We demonstrate successful application of BPD based RF estimation from synthetic data for a crustal model with a near-surface thin layer of thickness 5, 7, 10, and 15 km. The BPD can resolve these thin layers better with much improved signal-to-noise ratio than the conventional methods. Finally, we demonstrate application of the BPD receiver function (BPRF) method to a field dataset from Kutch, India, where near-surface sedimentary layers are known to be present. The BPRFs are able to resolve reflections from these layers very well.Jackson Chair funds at the Jackson School of Geosciences, University of Texas, AustinCouncil of Scientific and Industrial Research twelfth five year plan project at the Council of Scientific and Industrial Research National Geophysical Research Institute (CSIR-NGRI), HyderabadInstitute for Geophysic
- …
