178 research outputs found

    Useful Circuit Analogies to Model THz Field Effect Transistors

    Full text link
    The electron fluid model in plasmonic field effect transistor (FET) operation is related to the behavior of a radio-frequency (RF) cavity. This new understanding led to finding the relationships between physical device parameters and equivalent circuit components in traditional parallel resistor, inductor, and capacitor (RLC) and transmission models for cavity structures. Verification of these models is performed using PSpice to simulate the frequency dependent voltage output and compare with analytical equations for the drain potential as a function of frequency

    Simulation of beam-induced plasma in gas-filled rf cavities

    Full text link
    Processes occurring in a radio-frequency (rf) cavity, filled with high pressure gas and interacting with proton beams, have been studied via advanced numerical simulations. Simulations support the experimental program on the hydrogen gas-filled rf cavity in the Mucool Test Area (MTA) at Fermilab, and broader research on the design of muon cooling devices. SPACE, a 3D electromagnetic particle-in-cell (EM-PIC) code with atomic physics support, was used in simulation studies. Plasma dynamics in the rf cavity, including the process of neutral gas ionization by proton beams, plasma loading of the rf cavity, and atomic processes in plasma such as electron-ion and ion-ion recombination and electron attachment to dopant molecules, have been studied. Through comparison with experiments in the MTA, simulations quantified several uncertain values of plasma properties such as effective recombination rates and the attachment time of electrons to dopant molecules. Simulations have achieved very good agreement with experiments on plasma loading and related processes. The experimentally validated code SPACE is capable of predictive simulations of muon cooling devices.Comment: 10 pp. arXiv admin note: text overlap with arXiv:1709.0528

    An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    Full text link
    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.Comment: 8 pages, 4 figures, proceedings for conference EXA 2014 (Exotic Atoms - Vienna

    Observation of Coherently-Enhanced Tunable Narrow-Band Terahertz Transition Radiation from a Relativistic Sub-Picosecond Electron Bunch Train

    Full text link
    We experimentally demonstrate the production of narrow-band (δf/f≃20\delta f/f \simeq20% at f≃0.5f\simeq 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.Comment: 3 pages, 6 figure

    Conversion of a transverse density modulation into a longitudinal phase space modulation using an emittance exchange technique

    Get PDF
    We report on an experiment to produce a train of sub-picosecond microbunches using a transverse-to-longitudinal emittance exchange technique. The generation of a modulation on the longitudinal phase space is done by converting an initial horizontal modulation produced using a multislits mask. The preliminary experimental data clearly demonstrate the conversion process. To date only the final energy modulation has been measured. However numerical simulations, in qualitative agreement with the measurements, indicate that the conversion process should also introduce a temporal modulation.Comment: 4 pages, 6 figures. Submitted to the proceedings of the Physics and Applications of High-Brightness Electron Beams (HBEB09), Nov. 16-19, 2009, Maui H

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∼0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∼0.4\sim 0.4 μ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Electron Bunch Train Excited Higher-Order Modes in a Superconducting RF Cavity

    Full text link
    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effectively and conveniently in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including the theoretic model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University.Comment: Supported by National Natural Science Foundation of China (11275014
    • …
    corecore