11,749 research outputs found

    Inference on counterfactual distributions

    Get PDF
    In this paper we develop procedures for performing inference in regression models about how potential policy interventions affect the entire marginal distribution of an outcome of interest. These policy interventions consist of either changes in the distribution of covariates related to the outcome holding the conditional distribution of the outcome given covariates fixed, or changes in the conditional distribution of the outcome given covariates holding the marginal distribution of the covariates fixed. Under either of these assumptions, we obtain uniformly consistent estimates and functional central limit theorems for the counterfactual and status quo marginal distributions of the outcome as well as other function-valued effects of the policy, including, for example, the effects of the policy on the marginal distribution function, quantile function, and other related functionals. We construct simultaneous confidence sets for these functions; these sets take into account the sampling variation in the estimation of the relationship between the outcome and covariates. Our procedures rely on, and our theory covers, all main regression approaches for modeling and estimating conditional distributions, focusing especially on classical, quantile, duration, and distribution regressions. Our procedures are general and accommodate both simple unitary changes in the values of a given covariate as well as changes in the distribution of the covariates or the conditional distribution of the outcome given covariates of general form. We apply the procedures to examine the effects of labor market institutions on the U.S. wage distribution.

    Functional delta residuals and applications to functional effect sizes

    Full text link
    Given a functional central limit (fCLT) and a parameter transformation, we use the functional delta method to construct random processes, called functional delta residuals, which asymptotically have the same covariance structure as the transformed limit process. Moreover, we prove a multiplier bootstrap fCLT theorem for these transformed residuals and show how this can be used to construct simultaneous confidence bands for transformed functional parameters. As motivation for this methodology, we provide the formal application of these residuals to a functional version of the effect size parameter Cohen's dd, a problem appearing in current brain imaging applications. The performance and necessity of such residuals is illustrated in a simulation experiment for the covering rate of simultaneous confidence bands for the functional Cohen's dd parameter

    Quantile and Probability Curves Without Crossing

    Get PDF
    This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearranging the original estimated non-monotone curve into a monotone rearranged curve. We show that the rearranged curve is closer to the true quantile curve in finite samples than the original curve, establish a functional delta method for rearrangement-related operators, and derive functional limit theory for the entire rearranged curve and its functionals. We also establish validity of the bootstrap for estimating the limit law of the the entire rearranged curve and its functionals. Our limit results are generic in that they apply to every estimator of a monotone econometric function, provided that the estimator satisfies a functional central limit theorem and the function satisfies some smoothness conditions. Consequently, our results apply to estimation of other econometric functions with monotonicity restrictions, such as demand, production, distribution, and structural distribution functions. We illustrate the results with an application to estimation of structural quantile functions using data on Vietnam veteran status and earnings.Comment: 29 pages, 4 figure

    Inference on Counterfactual Distributions

    Get PDF
    Counterfactual distributions are important ingredients for policy analysis and decomposition analysis in empirical economics. In this article we develop modeling and inference tools for counterfactual distributions based on regression methods. The counterfactual scenarios that we consider consist of ceteris paribus changes in either the distribution of covariates related to the outcome of interest or the conditional distribution of the outcome given covariates. For either of these scenarios we derive joint functional central limit theorems and bootstrap validity results for regression-based estimators of the status quo and counterfactual outcome distributions. These results allow us to construct simultaneous confidence sets for function-valued effects of the counterfactual changes, including the effects on the entire distribution and quantile functions of the outcome as well as on related functionals. These confidence sets can be used to test functional hypotheses such as no-effect, positive effect, or stochastic dominance. Our theory applies to general counterfactual changes and covers the main regression methods including classical, quantile, duration, and distribution regressions. We illustrate the results with an empirical application to wage decompositions using data for the United States. As a part of developing the main results, we introduce distribution regression as a comprehensive and flexible tool for modeling and estimating the \textit{entire} conditional distribution. We show that distribution regression encompasses the Cox duration regression and represents a useful alternative to quantile regression. We establish functional central limit theorems and bootstrap validity results for the empirical distribution regression process and various related functionals.Comment: 55 pages, 1 table, 3 figures, supplementary appendix with additional results available from the authors' web site

    Delta method in large deviations and moderate deviations for estimators

    Get PDF
    The delta method is a popular and elementary tool for deriving limiting distributions of transformed statistics, while applications of asymptotic distributions do not allow one to obtain desirable accuracy of approximation for tail probabilities. The large and moderate deviation theory can achieve this goal. Motivated by the delta method in weak convergence, a general delta method in large deviations is proposed. The new method can be widely applied to driving the moderate deviations of estimators and is illustrated by examples including the Wilcoxon statistic, the Kaplan--Meier estimator, the empirical quantile processes and the empirical copula function. We also improve the existing moderate deviations results for MM-estimators and LL-statistics by the new method. Some applications of moderate deviations to statistical hypothesis testing are provided.Comment: Published in at http://dx.doi.org/10.1214/10-AOS865 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Program Evaluation and Causal Inference with High-Dimensional Data

    Full text link
    In this paper, we provide efficient estimators and honest confidence bands for a variety of treatment effects including local average (LATE) and local quantile treatment effects (LQTE) in data-rich environments. We can handle very many control variables, endogenous receipt of treatment, heterogeneous treatment effects, and function-valued outcomes. Our framework covers the special case of exogenous receipt of treatment, either conditional on controls or unconditionally as in randomized control trials. In the latter case, our approach produces efficient estimators and honest bands for (functional) average treatment effects (ATE) and quantile treatment effects (QTE). To make informative inference possible, we assume that key reduced form predictive relationships are approximately sparse. This assumption allows the use of regularization and selection methods to estimate those relations, and we provide methods for post-regularization and post-selection inference that are uniformly valid (honest) across a wide-range of models. We show that a key ingredient enabling honest inference is the use of orthogonal or doubly robust moment conditions in estimating certain reduced form functional parameters. We illustrate the use of the proposed methods with an application to estimating the effect of 401(k) eligibility and participation on accumulated assets.Comment: 118 pages, 3 tables, 11 figures, includes supplementary appendix. This version corrects some typos in Example 2 of the published versio

    Quantile and probability curves without crossing

    Get PDF
    The most common approach to estimating conditional quantile curves is to fit a curve, typically linear, pointwise for each quantile. Linear functional forms, coupled with pointwise fitting, are used for a number of reasons including parsimony of the resulting approximations and good computational properties. The resulting fits, however, may not respect a logical monotonicity requirement that the quantile curve be increasing as a function of probability. This paper studies the natural monotonization of these empirical curves induced by sampling from the estimated non-monotone model, and then taking the resulting conditional quantile curves that by construction are monotone in the probability.
    corecore