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Abstract. The most common approach to estimating conditional quantile curves is to fit a curve,

typically linear, pointwise for each quantile. Linear functional forms, coupled with pointwise fitting, are

used for a number of reasons including parsimony of the resulting approximations and good computa-

tional properties. The resulting fits, however, may not respect a logical monotonicity requirement – that

the quantile curve be increasing as a function of probability. This paper studies the natural monotoniza-

tion of these empirical curves induced by sampling from the estimated non-monotone model, and then

taking the resulting conditional quantile curves that by construction are monotone in the probability.

This construction of monotone quantile curves may be seen as a bootstrap and also as a monotonic re-

arrangement of the original non-monotone function. It is shown that the monotonized curves are closer

to the true curves in finite samples, for any sample size. Under correct specification, the rearranged

conditional quantile curves have the same asymptotic distribution as the original non-monotone curves.

Under misspecification, however, the asymptotics of the rearranged curves may partially differ from the

asymptotics of the original non-monotone curves. An analogous procedure is developed to monotonize

the estimates of conditional distribution functions. The results are derived by establishing the compact

(Hadamard) differentiability of the monotonized quantile and probability curves with respect to the

original curves in discontinuous directions, tangentially to a set of continuous functions. In doing so,

the compact differentiability of the rearrangement-related operators is established.
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1. Introduction and Discussion

The problem studied in this paper can be best described using linear quantile regres-

sion as the prime example (Koenker, 2005). Suppose that x′β(u) is a linear approxima-

tion to the u-quantile Q0(u|x) of a real response variable Y , given a vector of regressors

X = x. The typical estimation methods fit the conditional curve x′β(u) pointwise in

u ∈ (0, 1) producing an estimate x′β̂(u). Linear functional forms, coupled with pointwise

fitting, are used for a number of reasons including parsimony of the resulting approxi-

mations and good computational properties (Portnoy and Koenker, 1997). However, a

problem that might occur is that the map

u 7→ x′β̂(u)

may not be increasing in u, which violates the logical monotonicity requirement. Another

manifestation of this issue, known as the “quantile crossing problem” (He, 1997), is that

the conditional quantile curves x 7→ x′β(u) may cross for different values of u.

In the analysis we shall distinguish the following two cases, each leading to the lack

of monotonicity or the crossing problem:

(1) Monotonically correct case: The population curve u 7→ x′β(u) is increasing in u,

and thus satisfies the monotonicity requirement. However, the empirical curve

u 7→ x′β̂(u) may be non-monotone due to estimation error.

(2) Monotonically incorrect case: The population curve u 7→ x′β(u) is non-monotone

due to imperfect approximation to the true conditional quantile function. Ac-

cordingly, the resulting empirical curve u 7→ x′β̂(u) is also non-monotone due to

both non-monotonicity of the population curve and estimation error.

Consider the random variable

Yx := x′β̂(U) where U ∼ U(0, 1).

This variable can be seen as a bootstrap draw from the estimated quantile regression

model, as in Koenker (1994), and has the distribution function

F̂ (y|x) =

∫ 1

0

1{x′β̂(u) ≤ y}du. (1.1)
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Moreover, inverting the distribution function, one obtains a proper quantile function

F̂−1(u|x) = inf{y : F̂ (y|x) ≥ u}, (1.2)

which is monotone in u. The rearranged quantile function F̂−1(u|x) coincides with the

original curve x′β̂(u) if the original curve is increasing in u, but differs from the original

curve otherwise. Thus, starting with a possibly non-monotone original curve u 7→ x′β̂(u),

the rearrangement (1.1)-(1.2) produces a monotone quantile curve u 7→ F̂−1(u|x). In

what follows, we focus our attention on the interval (0, 1) without loss of generality.

Indeed, any closed subinterval of (0, 1) can also be considered isomorphically to the

treatment of the unit interval case, as commented further in Section 2.

As mentioned above, this rearrangement mechanism has a direct relation to the quan-

tile regression bootstrap (Koenker, 1994), since the rearranged quantile curve is produced

by sampling from the estimated original quantile model. Moreover, both the mechanism

and its name have a direct relation to rearrangement maps in variational analysis and op-

erations research (e.g., Hardy, Littlewood, and Polya, 1952, and Villani, 2003). Further

important references on the rearrangement method are discussed below.

The purpose of this paper is to establish the empirical properties of the rearranged

quantile curves and their distribution counterparts:

u 7→ F̂−1(u|x) and y 7→ F̂ (y|x),

under scenarios (1) and (2). The paper also characterizes certain analytical and approx-

imation properties of the corresponding population curves:

u 7→ F−1(u|x) = inf{y : F (y|x) ≥ u}, and y 7→ F (y|x) =

∫ 1

0

1{x′β(u) ≤ y}du.

The first main result of the paper establishes the improved estimation properties of

the rearranged curves. We show that the rearranged curve F̂−1(u|x) is closer to the true

conditional quantile curve Q0(u|x) than the original curve. Formally, for each x, we have

that for all p ∈ [1,∞]

(∫

U
|Q0(u|x)− F̂−1(u|x)|pdu

)1/p

≤
(∫

U
|Q0(u|x)− x′β̂(u)|pdu

)1/p

,
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where the inequality is strict for p ∈ (1,∞) whenever u 7→ x′β̂(u) is decreasing on

a subset of U := (0, 1) of positive Lebesgue measure, while u 7→ Q0(u|x) is strictly

increasing. This property is independent of the sample size, and thus continues to hold

in the population, and also regardless of whether the linear quantile estimator x′β̂(u)

estimates Q0(u|x) consistently or not, i.e. whether Q0(u|x) = x′β(u) or Q0(u|x) 6=
x′β(u). In other words, the rearranged quantile curves have smaller estimation error

than the original curves whenever the latter are not monotone. This is a very important

property that does not depend on the way the quantile model is estimated. It also does

not rely on any other specifics of the current context and is therefore applicable quite

generally.

Towards describing the essence of the rest of results, let us fix the value of the regressor

X to x. Suppose that β̂(u) is an estimator for β(u) that converges weakly to a Gaussian

process G(u), so that
√

nx′(β̂(u)− β(u)) ⇒ x′G(u), (1.3)

as a stochastic process indexed by u in the metric space of bounded functions `∞(0, 1).

For sufficient conditions, see, for example, Gutenbrunner and Jurečková (1992), Portnoy

(1991), and Angrist, Chernozhukov, and Fernandez-Val (2006).

The second main result of the paper is that in the monotonically correct case (1),

√
n(F̂ (y|x)− F (y|x)) ⇒ F ′(y|x)[x′G(F (y|x))], (1.4)

as a stochastic process indexed by y in the metric space `∞(Y), where Y is the support

of Yx; and

F ′(y|x) =
1

x′β′(u)

∣∣∣
u=F (y|x)

, with β′(u) :=
∂β(u)

∂u
.

Moreover, we show that

√
n(F̂−1(u|x)− F−1(u|x)) ⇒ x′G(u), (1.5)

as a stochastic process indexed by u, in `∞(0, 1); which, remarkably, coincides with the

first order asymptotics (1.3) of the original curve. This result has a convenient practical

implication: if the population curve is monotone, then the empirical non-monotone

curve can be re-arranged to be monotonic without affecting its (first order) asymptotic

properties. To derive the above results we find the functional Hadamard derivatives



5

of F (y|x) and F−1(u|x) with respect to perturbations of the underlying curve x′β(u)

in discontinuous directions, tangentially to the set of continuous functions, and then

use the functional delta method. Establishing the Hadamard differentiability of the

rearranged distribution and quantile curves in discontinuous directions is the second

main theoretical result of the paper.

The third main result is that in the monotonically incorrect case

√
n(F̂ (y|x)− F (y|x)) ⇒

K(y|x)∑

k=1

x′G(uk(y|x))

|x′β′(uk(y|x))| , (1.6)

as a stochastic process indexed by y ∈ K, in `∞(K), where K is an appropriate set

defined in the next section. Here u1(y|x) < ... < uK(y|x)(y|x) are solutions to the

equation y = x′β(u), assuming that K(y|x) is bounded. Similarly, for the rearranged

quantile curve,

√
n(F̂−1(u|x)− F−1(u|x)) ⇒

(
K(y|x)∑

k=1

1

|x′β′(uk(y|x))|

)−1 K(y|x)∑

k=1

x′G(uk(y|x))

|x′β′(uk(y|x))|

∣∣∣∣∣
y=F−1(u|x)

,

(1.7)

as a stochastic process indexed by u ∈ K ′, in `∞(K ′), where K ′ is an appropriate set

defined in the next section.

Analogously to quantiles, most estimation methods for conditional distribution func-

tions do not impose monotonicity, and therefore can give rise to non-monotonic empirical

conditional distribution curves; see, for example, Hall, Wolff, and Yao (1999). A similar

monotone rearrangement can be applied to these distribution curves by exchanging the

roles played by the quantile and the probability spaces. Thus, suppose that P̂ (y|x) is a

candidate estimate of a conditional distribution function, which is not monotone in y.

The rearranged monotone quantile curve associated with P̂ (y|x) is

Q̂ (u|x) =

∫ ∞

0

1{P̂ (y|x) ≤ u}dy −
∫ 0

−∞
1{P̂ (y|x) > u}dy.

The rearranged probability curve can then be obtained as the inverse of this quantile

curve, i.e.,

F̂ (y|x) = inf
{

u : Q̂ (u|x) ≥ y
}

,
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which is monotone by construction. Section 3 shows in more detail that similar improved

estimation properties and an asymptotic distribution theory goes through for Q̂ and F̂ .

The distributional results in the paper do not rely on the sampling properties of the

particular estimation method used, because they are expressed in terms of the differ-

entiability of the operator with respect to the basic estimated process. Moreover, the

results that follow are derived without imposing linearity of the functional forms. The

only conditions required are that (1) a central limit theorem like (1.3) applies to the

estimator of the curve, and (2) the population curves have some smoothness properties.

The exact nature of these population curves does not affect the validity of the results.

For example, the results hold regardless of whether the underlying model is an ordinary

or an instrumental quantile regression model.

There exist other methods to obtain monotonic fits based on quantile regression.

He (1997), for example, proposes to impose a location-scale regression model, which

naturally satisfies monotonicity. This approach is fruitful for location-scale situations,

but in numerous cases data do not satisfy the location-scale model, as discussed, for

example, in Lehmann (1974), Doksum (1974), and Koenker (2005). Koenker and Ng

(2005) develop a computational method for quantile regression that imposes the non-

crossing constraints in simultaneous fitting of quantile curves. This approach may be

fruitful in many situations, but the statistical properties of the method remain unknown.

Clearly, Koenker and Ng’s proposal is different from the rearrangement method.

The distributional results obtained in the paper can also be viewed as a functional

delta method for the rearrangement-related operators (1.1) and (1.2) that include the

inverse (quantile) operators as a special case. In this sense, they extend the previous

results by Gill and Johansen (1990), Doss and Gill (1992), and Dudley and Norvaisa

(1999) on compact differentiability of the quantile operator. The main technical difficulty

here, as well as in the quantile case, is that differentiability needs to be established in

discontinuous directions (that converge to continuous directions, i.e., tangentially to

the set of continuous functions), because the empirical perturbations of the quantile

processes are typically step functions.

Both the statistical and mathematical results of this paper complement the important

work of Dette, Neumeyer, and Pilz (2006), which applies the rearrangement operators to
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kernel mean regressions, in order to obtain mean regression functions that are monotonic

in the regressors. Our results on Hadamard differentiability in discontinuous directions

are new. They complement the local expansions in smooth directions subsumed in the

proofs in Dette et. al. for the case called here the monotonically correct case. In

addition, our results cover monotonically incorrect cases. The statistical problem also

differs quite substantially. The mathematical results of this paper also complement the

results on directional differentiability of L1- functionals of rearranged functions like (1.2)

by Mossino and Temam (1981). The results for L1-functionals do not imply the main

results of this paper, such as (1.4)-(1.7), but the converse is shown to be true. (See

discussion after Proposition 4 in Section 2 for more details.)

There are many potential applications of the estimation and differentiability results of

the paper to objects other than probability or quantile curves. For example, in a com-

panion work we present applications to economic demand and production functions and

to biometric growth curves, where monotonization is used to impose useful theoretical

or logical restrictions (Chernozhukov, Fernández-Val, and Galichon, 2006a).

We organize the rest of the paper as follows. In Section 2.1 we describe some basic

analytical properties of the rearranged population curves. In Section 2.2 we derive the

functional differentiability results. In Section 2.3 we present estimation properties of

the rearranged curves and establish their limit distributions. In Section 3 we extend

the previous results to monotonize estimates of distribution curves. In Section 4.1 we

illustrate the rearrangement procedure with an empirical application, and in Section 4.2

we provide a Monte-Carlo example. In Section 5 we conclude with a summary of the

main results.

2. Rearranged Quantile Curves: Analytical and Empirical Properties

In this section the treatment of the problem is somewhat more general than in the in-

troduction. In particular, we replace the linear functional form x′β(u) by Q(u|x). Define

Yx := Q(U |x), where U ∼ Uniform(U) with U = (0, 1). Let F (y|x) :=
∫ 1

0
1{Q(u|x) ≤

y}du be the distribution function of Yx, and F−1(u|x) := inf{y : F (y|x) ≥ u} be the

quantile function of Yx.
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Remark. We consider the interval (0, 1) without loss of generality. Indeed, suppose

we are interested in a particular subinterval (a, a + b) of (0, 1). For example, we may

wish to focus estimation on a particular range of quantiles or to avoid estimation of tail

quantiles. For this purpose, we define all objects conditionally on the event U ∈ (a, a+b):

Ỹx := Q̃(Ũ |x) = Q(a + bŨ |x), where Ũ ∼ U(0, 1), F̃ (ỹ|x) :=
∫ 1

0
1{Q̃(ũ|x) ≤ ỹ}dũ, and

F̃−1(ũ|x) := inf{y : F (y|x) ≥ ũ} for ũ ∈ (0, 1). The analysis of the paper applies to the

functions Q̃ and F̃−1. In order to go back to the unconditional quantities, we can use

the transformations Q(u|x) = Q̃((u−a)/b|x) for u ∈ (a, a+b) and F (y|x) = a+bF̃ (y|x)

for y ∈ {Q(u|x) : u ∈ (a, a + b)}.

2.1. Basic Analytical Properties. We start by developing some basic properties for

F (y|x) and F−1(u|x), the population counterparts of the rearranged distribution curve

and its inverse. We need these properties to derive various empirical properties stated

in the next section.

Recall first the following definitions from Milnor (1965): Let g : U ⊂ R → R be a

continuously differentiable function. A point u ∈ U is called a regular point of g if the

derivative of g at this point does not vanish, i.e., g′ (u) 6= 0. A point u which is not a

regular point is called a critical point. A value y ∈ g (U) is called a regular value of g

if g−1 ({y}) contains only regular points, i.e., if ∀u ∈ g−1 ({y}), g′ (u) 6= 0. A value y

which is not a regular value is called a critical value.

Denote by Yx the support of Yx, YX := {(y, x) : y ∈ Yx, x ∈ X}, and UX := U × X .

We assume throughout that Yx ⊂ Y , which is compact subset of R, and that x ∈ X , a

compact subset of Rd. In some applications the curves of interest are not functions of

x, or we might be interested in a particular value x. In this case, the set X is taken to

be a singleton X = {x}. We make the following assumptions about Q(u|x):

(a) Q(u|x) : U ×X → R is a continuously differentiable function in both arguments,

(b) For each x ∈ X , the number of elements of {u ∈ U | Q′(u|x) = 0} is finite and

uniformly bounded on x ∈ X .

Assumption (b) implies that, for each x ∈ X , Q′(u|x) is not zero almost everywhere on

U and can only switch sign a bounded number of times. Let Y∗x be the subset of regular

values of u 7→ Q(u|x) in Yx, and YX ∗ := {(y, x) : y ∈ Y∗x, x ∈ X}.
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Proposition 1 (Basic Properties of F (y|x) and F−1(u|x)). Under assumptions (a) -

(b), the functions F (y|x) and F−1(u|x) satisfy the following properties:

1. The set of critical values, Yx \ Y∗x, is finite, and
∫
Yx\Y∗x dF (y|x) = 0.

2. For any y ∈ Y∗x

F (y|x) =

K(y|x)∑

k=1

sign{Q′(uk(y|x)|x)}uk(y|x) + 1{Q′(uK(y|x)(y|x)|x) < 0},

where {uk(y|x), for k = 1, ..., K(y|x) < ∞} are the roots of Q(u|x) = y in increasing

order.

3. For any y ∈ Y∗x, the ordinary derivative f(y|x) = ∂F (y|x)/∂y exists and takes the

form

f(y|x) =

K(y|x)∑

k=1

1

|Q′(uk(y|x)|x)| ,

which is continuous at each y ∈ Y∗x. For any y ∈ Y \ Y∗x, set f(y|x) := 0. F (y|x) is

absolutely continuous and strictly increasing in y ∈ Yx. Moreover, f(y|x) is a Radon-

Nikodym derivative of F (y|x) with respect to the Lebesgue measure.

4. The quantile function F−1(u|x) partially coincides with Q(u|x); namely

F−1(u|x) = Q(u|x),

provided that Q(u|x) is increasing at u, and the equation Q(u|x) = y has unique solution

for y = F−1(u|x).

5. The quantile function F−1(u|x) is equivariant to location and scale transformations

of Q(u|x).

6. The quantile function F−1(u|x) has an ordinary continuous derivative

1/f(F−1(u|x)|x),

when F−1(u|x) ∈ Y∗x. This function is also a Radon-Nikodym derivative with respect to

the the Lebesgue measure.

7. The map (y, x) 7→ F (y|x) is continuous on YX and the map (u, x) 7→ F−1(u|x) is

continuous on UX .
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The following simple example illustrates some of these basic properties in a situation

where the initial population pseudo-quantile curve is highly non-monotone. Consider

the following pseudo-quantile function:

Q(u) = 5

(
u +

1

π
sin(2πu)

)
. (2.1)

The left panel of Figure 1 shows that this function is non-monotone in [0, 1]. In par-

ticular, the slope of Q(u) changes sign twice at 1/3 and 2/3. The rearranged quantile

curve F−1(u), also plotted in this panel, is continuous and monotonically increasing.

The results 1, 2, 4 and 7 of the proposition are illustrated in the right panel of Figure

1, which plots the original and rearranged distribution curves. Here we can see that

the rearranged distribution function is continuous, does not have mass points, and co-

incide with the original curve for values of y where the original curve is one to one and

increasing.

Figure 2 illustrates the third and sixth results of the proposition by plotting the

sparsity function for F−1(u) and the density function of F (y). The derivative of F (y)

in the right panel is continuous at the regular values of Q(u). Similarly, the sparsity

function for F−1(u) in the left panel is continuous at the corresponding image values

(under F (y)).

2.2. Functional Derivatives. Next, we establish the main results of the paper on

Hadamard differentiability of F (y|x) and F−1(u|x) with respect to Q(u|x), tangentially

to the space of continuous functions on UX . This differentiability property is important

for deriving the asymptotic distributions of the rearranged estimates. In particular, the

property allows us to establish generic convergence results for rearranged curves based on

any initial quantile estimator, provided the initial estimator satisfies a functional central

limit theorem. The property also implies that the bootstrap is valid for performing

inference on the rearranged estimates, provided the bootstrap is valid for the initial

estimates. This result follows from the functional delta method for the bootstrap (e.g.,

Theorem 13.9 in van der Vaart, 1998).

In what follows, `∞(UX ) denotes the set of bounded and measurable functions h :

UX → R, C(UX ) denotes the set of continuous functions mapping h : UX → R, and
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Figure 1. Left: The pseudo-quantile function Q(u) and the rearranged
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and the rearranged distribution function F (y).
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tribution function F (y).
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`1(UX ) denotes the set of measurable functions h : UX → R such that
∫
U

∫
X |h(u|x)|dudx

< ∞, where du and dx denote the integration with respect to the Lebesgue measure on

U and X , respectively.

Proposition 2 (Hadamard Derivative of F (y|x) with respect to Q(u|x)). Define F (y|x, ht)

:=
∫ 1

0
1{Q(u|x) + tht(u|x) ≤ y}du. Under assumptions (a)-(b), as t → 0,

Dht(y|x, t) =
F (y|x, ht)− F (y|x)

t
→ Dh(y|x), (2.2)

Dh(y|x) := −
K(y|x)∑

k=1

h(uk (y|x) |x)

|Q′(uk(y|x)|x)| . (2.3)

The convergence holds uniformly in any compact subset of YX ∗ := {(y, x) : y ∈ Y∗x, x ∈
X}, for every |ht − h|∞ → 0, where ht ∈ `∞ (UX ), and h ∈ C(UX ).

Proposition 3 (Hadamard Derivative of F−1(u|x) with respect to Q(u|x)). Under as-

sumptions (a)-(b), as t → 0,

D̃ht(u|x, t) :=
F−1(u|x, ht)− F−1(u|x)

t
→ D̃h(u|x), (2.4)

D̃h(u|x) := − 1

f(F−1(u|x)|x)
·Dh(F

−1(u|x)|x). (2.5)

The convergence holds uniformly in any compact subset of UX ∗ = {(u, x) : (F−1(u|x), x) ∈
YX ∗}, for every |ht − h|∞ → 0, where ht ∈ `∞ (UX ), and h ∈ C(UX ).

The convergence results hold uniformly on regions that exclude the critical values of

the mapping u 7→ Q(u|x). At the critical values, Q(u|x) possibly changes from increasing

to decreasing. Moreover, in the monotonically correct case (1), the following result is

worth emphasizing:

Corollary 1 (Monotonically correct case). Suppose u 7→ Q(u|x) has Q′(u|x) > 0, for

each (u, x) ∈ UX , then YX ∗ = YX and UX ∗ = UX . Therefore, the convergence in

Propositions 2 and 3 holds uniformly over the entire YX and UX , respectively. More-

over, D̃h(u|x) = h, i.e., the Hadamard derivative of the rearranged quantile with respect

to the original curve is the identity operator.
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The convergence is uniform over the entire domain in the monotonically correct case.

This result raises naturally the question of whether uniform convergence can be achieved

by some operation of smoothing in the monotonically incorrect case – namely integrating

either over y (or over u). The answer is indeed yes.

The following proposition calculates the Hadamard derivative of the following func-

tionals obtained by integration:

(y′, x) 7→
∫

Y
1{y ≤ y′}g(y|x)F (y|x)dy, (u′, x) 7→

∫

U
1{u ≤ u′}g(u|x)F−1(u|x)du,

with the restrictions on g specified below. These elementary functionals are useful

building blocks for various statistics, as briefly mentioned in the next section.

Proposition 4. The following results are true with the limits being continuous on the

specified domains:

1.

∫

Y
1{y ≤ y′}g(y|x)Dht(y|x, t)dy →

∫

Y
1{y ≤ y′}g(y|x)Dh(y|x)dy

uniformly in (y′, x) ∈ YX , for any g ∈ `∞(YX ) such that x 7→ g(y|x) is continuous for

a.e. y.

2.

∫

U
1{u ≤ u′}g(u|x)D̃ht(u|x, t)du →

∫

U
1{u ≤ u′}g(u|x)D̃h(u|x)du

uniformly in (u′, x) ∈ UX , for any g ∈ `1(UX ) such that x 7→ g(u|x) is continuous for

a.e. u.

This proposition essentially is a corollary of Propositions 2 and 3. Indeed, the results

(1)-(2) follow from the fact that the pointwise convergence of Propositions 2 and 3,

coupled with the uniform integrability shown in Lemma 3 in the Appendix, permits the

interchange of limits and integrals. An alternative way of proving result (2), but not any

other result in the paper, can be based on exploiting the convexity of the functional in

(2) with respect to the underlying curve, following the approach of Mossino and Temam

(1981), and Alvino, Lions, and Trombetti (1989). Due to this limitation, we do not

pursue this approach in this paper. However, details of this approach are described

in Chernozhukov, Fernandez-Val, and Galichon (2006b) with an application to some

nonparametric estimation problems.
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It is also worth emphasizing the properties of the following smoothed functionals. For

a measurable function f : R 7→ R define the smoothing operator as

Sf(y) :=

∫
kδ(y − y′)f(y′)dy′, (2.6)

where kδ(v) = 1{|v| ≤ δ}/2δ and δ > 0 is a fixed bandwidth. Accordingly, the smoothed

curves SF (y|x) and SF−1(u|x) are given by

SF (y|x) :=

∫
kδ(y − y′)F (y′|x)dy′, SF−1(u|x) :=

∫
kδ(u− u′)F−1(u′|x)du′.

Since these curves are merely formed as differences of the elementary functionals in

Proposition 4, followed by a division by δ, the following corollary is immediate.

Corollary 2. We have that SDht(y|x, t) → SDh(y|x) uniformly in (y, x) ∈ YX , and

SD̃ht(u|x, t) → SD̃h(u|x) uniformly in (u, x) ∈ UX .

Note that smoothing accomplishes uniform convergence over the entire domain, which

is a good property to have from the perspective of data analysis.

2.3. Empirical Properties of F̂ (y|x) and F̂−1(u|x). We are now ready to state the

main results for this section.

Proposition 5 (Improvement in Estimation Property Provided by Rearrangement).

Suppose that Q̂(·|·) is an estimator (not necessarily consistent) for some true quantile

curve Q0(·|·). Then, the rearranged curve F̂−1(u|x) is closer to the true curve than

Q̂(u|x) in the sense that, for each x ∈ X ,

(∫

U
|Q0(u|x)− F̂−1(u|x)|pdu

)1/p

≤
(∫

U
|Q0(u|x)− Q̂(u|x)|pdu

)1/p

, p ∈ [1,∞],

where the inequality is strict for p ∈ (1,∞) whenever Q̂(u|x) is decreasing on a subset

of U of positive Lebesgue measure, while Q0(u|x) is increasing on U .

The above property is independent of the sample size and of the way the estimate of

the curve is obtained, and thus continues to hold in the population.

This proposition establishes that the rearranged quantile curves have smaller estima-

tion error than the original curves whenever the latter are not monotone. This is a very
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important property that does not depend on the way the quantile model is estimated.

It also does not rely on any other specifics and is thus applicable quite generally.

The following proposition investigates the asymptotic distributions of the rearranged

curves.

Proposition 6 (Empirical Properties of (y, x) 7→ F̂ (y|x) and (u, x) 7→ F̂−1(u|x)).

Suppose that Q̂(·|·) is an estimator for Q(·|·) that takes its values in the space of bounded

measurable functions defined on UX , and that, in `∞(UX ),

√
n(Q̂(u|x)−Q(u|x)) ⇒ G(u|x),

as a stochastic process indexed by (u, x) ∈ UX , where (u, x) 7→ G(u|x) is a Gaussian

process with continuous paths. Assume also that Q(u|x) satisfies the basic conditions (a)

and (b). Then in `∞(K), where K is any compact subset of YX ∗,
√

n(F̂ (y|x)− F (y|x)) ⇒ DG(y|x)

as a stochastic process indexed by (y, x) ∈ YX ∗; and in `∞(UXK), with UXK = {(u, x) :

(F−1(u|x), x) ∈ K},
√

n(F̂−1(u|x)− F−1(u|x)) ⇒ D̃G(u|x),

as a stochastic process indexed by (u, x) ∈ UXK.

Corollary 3 (Monotonically correct case). Suppose u 7→ Q(u|x) has Q′(u|x) > 0

for each (u, x) ∈ UX , then YX ∗ = YX and UX ∗ = UX . Accordingly, the con-

vergence in Proposition 5 holds uniformly over the entire YX and UX . Moreover,

D̃G(u|x) = G(u|x), i.e., the rearranged quantile curves have the same first order as-

ymptotic distribution as the original quantile curves.

Thus, in the monotonically correct case, the first order properties of the rearranged

and initial quantile estimates coincide. Hence, all the inference tools that apply to

original quantile estimates also apply to the rearranged quantile estimates. In particular,

if the bootstrap is valid for the original estimate, it is also valid for the rearranged

estimate, by the functional delta method for the bootstrap. In the empirical example

of Section 4, we exploit this useful property to construct uniform confidence bands for

the conditional quantile functions based on the rearranged quantile function estimates.



16

In addition to the results on quantile function estimates, Proposition 6 provides the

asymptotic properties of the distribution function estimates. The preceding remark

about the validity of bootstrap applies also to these estimates.

In the monotonically incorrect case, the large sample properties of the rearranged

quantile estimates differ from those of the initial quantile estimates. Proposition 6

enables us to perform inferences for rearranged curves in this case, including by the

bootstrap, but only after excluding certain nonregular neighborhoods (for the distribu-

tion estimates, the neighborhood of the critical values of the map u 7→ Q(u|x), and, for

the rearranged quantile estimates, the image of the latter neighborhood under F (y|x)).

However, if we consider the following linear functionals of the rearranged quantile and

distribution estimates:

(y′, x) 7→
∫

Y
1{y ≤ y′}g(y|x)F̂ (y|x)dy, (u′, x) 7→

∫

U
1{u ≤ u′}g(u|x)F̂−1(u|x)du,

then we no longer need to exclude the nonregular neighborhoods. The following propo-

sition describes the empirical properties of these functionals in large samples.

Proposition 7 (Empirical Properties of Integrated Curves). Under the conditions of

Proposition 6, the following results are true with the limits being continuous on the

specified domains:

1.
√

n

∫

Y
1{y ≤ y′}g(y|x)(F̂ (y|x)− F (y|x))dy ⇒

∫

Y
1{y ≤ y′}g(y|x)DG(y|x)dy,

as a stochastic process indexed by (y′, x) ∈ YX , in `∞(YX ).

2.
√

n

∫

U
1{u ≤ u′}g(u|x)(F̂−1(u|x)− F−1(u|x))du ⇒

∫

U
1{u ≤ u′}g(u|x)D̃G(u|x)du,

as stochastic process indexed by (u′, x) ∈ UX , in `∞(UX ).

The restrictions on the function g are the same as in Proposition 4.

The linear functionals defined above are useful building blocks for various statistics,

such as partial means, various moments, and Lorenz curves. For example, the conditional

Lorenz curve is

L̂(u|x) =
( ∫

U
1{t ≤ u}F̂−1(t|x)dt

)
/
( ∫

U
F̂−1(t|x)dt

)
,
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which is a ratio of a partial mean to the mean. Hadamard differentiability of these

statistics with respect to the underlying Q(u|x) immediately follows from the Hadamard

differentiability of the elementary functionals of Proposition 7 by means of the chain

rule. Therefore, the asymptotic distribution of these statistics can be determined from

the asymptotic distribution of the linear functionals, by the functional delta method.

In particular, the validity of the bootstrap for these functionals is preserved by the

functional delta method for the bootstrap.

We next consider the empirical properties of the smoothed curves obtained by applying

the linear smoothing operator S defined in (2.6) to F̂ (y′|x) and F̂−1(u|x):

SF̂ (y|x) :=

∫
kδ(y − y′)F̂ (y′|x)dy′, SF̂−1(u|x) :=

∫
kδ(u− u′)F̂−1(u′|x)du′.

The following corollary immediately follows from Corollary 2 and the functional delta

method.

Corollary 4 (Large Sample Properties of Smoothed Curves). Under the conditions of

Proposition 6, in `∞(YX ),

√
n(SF̂ (y|x)− SF (y|x)) ⇒ S[DG(y|x)],

as a stochastic process indexed by (y, x) ∈ YX , and in `∞(UX ),

√
n(SF̂−1(u|x)− SF−1(u|x)) ⇒ S[D̃G(u|x)],

as a stochastic process indexed by (u, x) ∈ UX .

Thus, inference on the smoothed rearranged estimates can be performed without

excluding nonregular neighborhoods, which is convenient for practice. Furthermore,

validity of the bootstrap for the smoothed curves follows by the functional delta method

for the bootstrap.

3. Theory of Rearranged Distribution Curves

The rearrangement method can also be applied to rearrange cumulative distribution

curves monotonically by exchanging the roles of the quantile and probability spaces.

There are several situations where one might be faced with the problem of non-

increasing empirical distribution curves. In an option pricing context, for example,
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Ait-Sahalia and Duarte (2003) use market data to estimate a risk-neutral distribution.

Estimation error may cause the resulting distribution function to be non-monotonic. In

other cases the distribution curve is obtained by some inverse transformation and local

non-monotonicity comes as an artefact of the regularization technique. In other situa-

tions the particular estimation technique may not respect monotonicity (see, e.g., Hall,

Wolff, and Yao, 1999). We present an alternative solution to this problem that uses the

rearrangement method.

Here we do not present the conditional case for notational convenience. All derivations

for conditional distributions, however, are exactly parallel to those presented in this

section. Suppose we have y 7→ P̂ (y) as a candidate empirical probability distribution

curve, which does not necessarily satisfy monotonicity, with population counterpart

P (y). Define the following quantile curve

Q̂(u) =

∫ ∞

0

1{P̂ (y) < u}dy −
∫ 0

−∞
1{P̂ (y) > u}dy,

which is monotone. In what follows, we further assume that the support of P (y) is

Y ⊂ [0, +∞), so that the second term drops out (otherwise it can be treated analogously

to the first).

The inverse of the quantile curve is the rearranged probability curve

F̂ (y) = inf
{

y : Q̂ (u) ≥ y
}

,

which is also monotone by construction. It should be clear at this point that the quan-

tities Q̂ and F̂ are exactly symmetric to F̂ and Q̂ in the quantile case.

The following improved approximation property is true for F̂ : Let F0(y) be the true

distribution function, then for all p ∈ [1,∞],

(∫

R
|F0(y)− F̂ (y)|pdy

)1/p

≤
(∫

R
|F0(y)− P̂ (y)|pdy

)1/p

,

where the inequality is strict for p ∈ (1,∞) whenever the integral on the right is finite

and y 7→ P̂ (y) is decreasing on a subset of positive Lebesgue measure, while F0(u) is

strictly increasing. This property is independent of the sample size, and thus continues

to hold in the population.
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In the monotonically correct case, that is when P ′ (Q(u)) > 0 for all u ∈ [0, 1], if the

empirical distribution curve P (y) satisfies

√
n

(
P̂ (y)− P (y)

)
⇒ G(y)

in `∞(Y), where G is a Gaussian process, then

√
n

(
Q̂(u)−Q(u)

)
⇒

(
1

P ′(Q(u))

)
G (Q(u))

in `∞([0, 1]), and, in `∞(Y),

√
n

(
F̂ (y)− F (y)

)
⇒ G (y) . (3.1)

Results paralleling those of the previous section also follow for the monotonically

incorrect case. In particular, we have

√
n

(
Q̂(u)−Q(u)

)
⇒

K(u)∑

k=1

G (yk (u))

|P ′(yk(u))|
in `∞([0, 1]), and

√
n

(
F̂ (y)− F (y)

)
⇒




K(u)∑

k=1

1

|P ′(yk (u))|



−1

K(u)∑

k=1

G (yk (u))

|P ′(yk (u))|

∣∣∣∣∣∣
u=P (y)

(3.2)

in `∞(Y), where {yk(u), for k = 1, ..., K(u)} are the roots of P (y) = u, assuming K(u)

is bounded uniformly in u.

4. Illustrative Examples

4.1. Empirical Example. To illustrate the practical applicability of the rearrangement

method, we consider the estimation of expenditure curves. We use the original Engel

(1857) data, from 235 budget surveys of 19th century working-class Belgium households,

to estimate the relationship between food expenditure and annual household income (see

Koenker, 2005). Ernst Engel originally presented these data to support the hypothesis

that food expenditure constitutes a declining share of household income (Engel’s Law).

In Figure 3, we show a scatterplot of the Engel data on food expenditure versus house-

hold income, along with quantile regression curves with the quantile indices {05, 0.1, ...,

0.95}. We see that the quantile regression lines become closer and cross at low values of
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income. This crossing problem of the Engel curves is also evident in Figure 4, in which

we plot the quantile regression process of food expenditure as a function of the quantile

index. For low values of income, the quantile regression process is clearly non-monotone.

The rearrangement procedure fixes the non-monotonicity producing increasing quantile

functions. Moreover, the rearranged curves coincide with their quantile regression coun-

terparts for the middle values of income where there is no quantile-crossing problem.

In Figure 5, we plot simultaneous 90% confidence intervals for the conditional quantile

function of food expenditure for different values of income (at the sample median, and the

5% percentile of income). We construct the bands using both original quantile regression

curves and rearranged quantile curves based on 500 bootstrap repetitions and a grid of

quantile indices {0.10, 0.11, ..., 0.90}. We obtain the bands for the rearranged curves

assuming that the population quantile regression curves are monotonically correct, so

that the first order behavior of the rearranged curves coincides with the behavior of the

original curves. The figure shows that even for the low value of income the rearranged

bands lie within the quantile regression bands. This observation points towards the

maintained assumption of the monotonically correct case. The lack of monotonicity of

the estimated quantile regression process in this case is likely to by caused by sampling

error.

We find more evidence consistent with the monotonically correct case in Figure 6, in

which we plot the simultaneous confidence bands for the smoothed quantile regression

and rearranged curves. We construct the band by bootstrapping the smoothed curves

(with bandwidth equal to .05). The bootstrap bands are valid for the smoothed rear-

ranged curves even in the monotonically incorrect case. The almost perfect overlapping

between the confidence bands points towards the monotonically correct case. Interest-

ingly, smoothing reduces the width of the confidence bands, but does not completely

monotonize the quantile regression curves.

4.2. Monte Carlo. We use the following Monte Carlo experiment, matching closely the

previous empirical application, to illustrate the estimation properties of the rearranged

curves in finite samples. In particular, we consider two designs based on the location-

scale shift model: Y = Z(X)′α + (Z(X)′γ)ε, where ε is independent of X, with the true
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Figure 3. The scatterplot and quantile regression fits of the Engel

food expenditure data. The plot shows a scatterplot of the Engel data

on food expenditure vs. household income for a sample of 235 19th cen-

tury working-class Belgium households. Superimposed on the plot are the

{0.05, 0.10, ..., 0.95} quantile regression curves. The range displayed corre-

sponds to values of income lower than 1500 and values of food expenditure

lower than 800.

conditional quantile function

Q0(u|X) = Z(X)′α + (Z(X)′γ)Qε(u).

Design 1 includes a constant and a regressor, namely Z(X) = (1, X); and design 2

has an additional nonlinear regressor, namely, Z(X) = (1, X, 1{X > a} · X), where

a = median(X). We select the parameters for designs 1 and 2 to match the Engel

empirical example, employing the estimation method of Koenker and Xiao (2002). For

design 1 we set α = (624.15, 0.55) and γ = (1, 0.0013); and for design 2 we set α =
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Figure 4. Quantile regression processes and rearranged quantile pro-

cesses for the Engel food expenditure data. Quantile regression estimates

are plotted with a thick gray line, whereas the rearranged estimates are

plotted in black.

(624.15, 0.55,−0.003) and γ = (1, 0.0017,−0.0003). For each design, we draw 1,000

Monte Carlo samples of size n = 235. To generate the values of the dependent variable,

we draw observations from a normal distribution with the same mean and variance as

the residuals ε = (Y −Z(X)′α)/(Z(X)′γ) of the Engel data set; and we fix the regressor

X in all the replications to the observations of income in the Engel data set.

We use designs 1 and 2 to assess the estimation properties of the original and rear-

ranged quantile regressions under the correct and incorrect specification of the functional
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Figure 5. Simultaneous 90% confidence bands for quantile regression

processes and rearranged quantile processes for the Engel food expenditure

data. Two different values of the income regressor are considered. The

bands for quantile regression are plotted in light gray, whereas the bands

for rearranged quantile regression are plotted in dark gray.

form. Thus, in each replication, we estimate the model

Q(u|X) = Z(X)′β(u), Z(X) = (1, X).

This gives the correct functional form for design 1, that is, Q(u|X) ≡ Q0(u|X), and an

incorrect functional form for design 2, that is Q(u|X) 6≡ Q0(u|X) (due to the omission of

a nonlinear regressor). Accordingly, estimation error for design 1 arises entirely due to

sampling error, while the estimation error for design 2 arises due to both sampling error

and specification error. Regardless of the nature of the estimation error, Proposition 5

establishes that the rearranged quantile curves should be closer to the true conditional

quantiles than the original curves.
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Figure 6. Simultaneous 90% confidence bands for the smoothed quan-

tile regression processes and the smoothed rearranged quantile processes

for the Engel food expenditure data. The bands for the smoothed original

curves are plotted in light gray, whereas the bands for the smoothed rear-

ranged curves are plotted in dark gray. The smoothed curves are obtained

using a bandwidth equal to 0.05.

In each replication, we fit a linear quantile regression curve Q̂(u|X) = X ′β̂(u) and

monotonize this curve to get F̂−1(u|X) using the rearrangement method. Table 1 reports

measures of the estimation error of the original and rearranged estimated conditional

quantile curves using different norms (p = 1, 2, 3, 4, and ∞), with the regressor fixed at

a value, X = x0, that corresponds to the 5% quantile of the regressor X (X = 452).

We select this value motivated by the empirical example. Each entry of the table gives

a Monte Carlo average of

Lp :=

(∫

U
|Q0(u|x0)− Q̃(u|x0)|pdu

)1/p

,
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for Q̃(u|x0) = x′0β̂(u) and Q̃(u|x0) = F̂−1(u|x0). We evaluate the integral using a net of

indices u of size .01.

Both in the correctly specified case and in the misspecified case, we find that the

rearranged curves estimate the true quantile curves Q0(u|X) more accurately than the

original curves, providing a 4% to 15% reduction in the estimation/approximation error,

depending on the norm.

Table 1. Estimation Error of Original and Rearranged Curves.

Design 1: Correct Specification Design 2: Incorrect Specification

Original Rearranged Ratio Original Rearranged Ratio

L1 6.79 6.61 0.96 7.33 7.02 0.95

L2 7.99 7.69 0.95 8.72 8.20 0.93

L3 8.93 8.51 0.95 9.85 9.12 0.92

L4 9.70 9.17 0.94 10.78 9.86 0.91

L∞ 17.14 15.32 0.90 19.44 16.44 0.85

5. Conclusion

This paper analyzes a simple regularization procedure for estimation of conditional

quantile and distribution functions based on rearrangement operators. Starting from

a possibly non-monotone empirical curve, the procedure produces a rearranged curve

that not only satisfies the natural monotonicity requirement, but also has smaller esti-

mation error than the original curve. Asymptotic distribution theory is derived for the

rearranged curves, and the usefulness of the approach is illustrated with an empirical

example and a simulation experiment.
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Appendix A. Proofs

A.1. Proof of Proposition 1. First, note that the distribution of Yx has no atoms,

i.e.,

Pr[Yx = y] = Pr[Q(U |x) = y] = Pr[U ∈ {u ∈ U : u is a root of Q(u|x) = y}] = 0,

since the number of roots of Q(u|x) = y is finite under (a) - (b), and U ∼ Uniform(U).

Next, by assumptions (a)-(b) the number of critical values of Q(u|x) is finite, hence

claim (1) follows.

Next, for any regular y, we can write F (y|x) as

∫ 1

0

1{Q(u|x) ≤ y}du =

K(y|x)−1∑

k=0

∫ uk+1(y|x)

uk(y|x)

1{Q(u|x) ≤ y}du +

∫ 1

uK(y|x)(y|x)

1{Q(u|x) ≤ y}du,

where u0(y|x) := 0 and {uk(y|x), for k = 1, ..., K(y|x) < ∞} are the roots of Q(u|x) = y

in increasing order. Note that the sign of Q′(u|x) alternates over consecutive uk(y|x),

determining whether 1{Q(y|x) ≤ y} = 1 on the interval [uk−1(y|x), uk(y|x)]. Hence

the first term in the previous expression simplifies to
∑K(y|x)−1

k=0 1{Q′(uk+1(y|x)|x) ≥
0}(uk+1(y|x)− uk(y|x)); while the last term simplifies to 1{Q′(uK(y|x)(y|x)|x) ≤ 0}(1−
uK(y|x)(y|x)). An additional simplification yields the expression given in claim (2) of the

proposition.

The proof of claim (3) follows by taking the derivative of expression in claim (2), noting

that at any regular value y the number of solutions K(y|x) and sign(Q′(uk(y|x)|x)) are

locally constant; moreover,

u′k(y|x) =
sign(Q′(uk(y|x)|x))

|Q′(uk(y|x)|x)| .

Combining these facts we get the expression for the derivative given in claim (3).

To show the absolute continuity of F (y|x) with f(y|x) being the Radon-Nykodym

derivative, it suffices to show that for each y′ ∈ Yx,
∫ y′

−∞ f(y|x)dy =
∫ y′

−∞ dF (y|x), cf.

Theorem 31.8 in Billingsley (1995). Let V x
t be the union of closed balls of radius t

centered on the critical points Yx \ Y∗x, and define Y t
x = Yx\V x

t . Then,
∫ y′

−∞ 1{y ∈
Y t

x}f(y|x)dy =
∫ y′

−∞ 1{y ∈ Y t
x}dF (y|x). Since the set of critical points Yx \ Y∗x is finite
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and has mass zero under F (y|x),
∫ y′

−∞ 1{y ∈ Y t
x}dF (y|x) ↑ ∫ y′

−∞ dF (y|x) as t → 0.

Therefore,
∫ y′

−∞ 1{y ∈ Y t
x}f(y|x)dy ↑ ∫ y′

−∞ f(y|x)dy =
∫ y′

−∞ dF (y|x).

Claim (4) follows by noting that at the regions where s → Q(s|x) is increasing and

one-to-one, we have that F (y|x) =
∫

Q(s|x)≤y
ds =

∫
s≤Q−1(y|x)

ds = Q−1(y|x). Inverting

the equation u = F (F−1(u|x)|x) = Q−1(F−1(u|x)|x) yields F−1(u|x) = Q(u|x).

Claim (5). We have Yx = Q(U |x) has quantile function F−1(u|x). The quantile

function of α + βQ(U |x) = α + βYx, for β > 0, is therefore inf{y : Pr(α + βYx ≤ y) ≥
u} = α + βF−1(u|x).

Claim (6) is immediate from claim (3).

Claim (7). The proof of continuity of F (y|x) is subsumed in the step 1 of the proof of

Proposition 3 (see below). Therefore, for any sequence xt → x we have that F (y|xt) →
F (y|x) uniformly in y, and F (y|x) is continuous. Let ut → u and xt → x. Since

F (y|x) = u has a unique root y = F−1(u|x), the root of F (y|xt) = ut, i.e., yt =

F−1(ut|xt), converges to y by a standard argument, see, e.g., van der Vaart and Wellner

(1997). ¤

A.2. Proof of Propositions 2-7. In the proofs that follow we will repeatedly use

Lemma 1, which establishes the equivalence of continuous convergence and uniform

convergence:

Lemma 1. Let D and D′ be complete separable metric spaces, with D compact. Suppose

f : D → D′ is continuous. Then a sequence of functions fn : D → D′ converges to f

uniformly on D if and only if for any convergent sequence xn → x in D we have that

fn(xn) → f(x).

Proof of Lemma 1: See, for example, Resnick (1987), page 2. ¤

Proof of Proposition 2. We have that for any δ > 0, there exists ε > 0 such that

for u ∈ Bε(uk(y|x)) and for small enough t ≥ 0

1{Q(u|x) + tht(u|x) ≤ y} ≤ 1{Q(u|x) + t(h(uk(y|x)|x)− δ) ≤ y},

for all k ∈ 1, ..., K(y|x); whereas for all u 6∈ ∪kBε(uk(y|x)), as t → 0,

1{Q(u|x) + tht(u|x) ≤ y} = 1{Q(u|x) ≤ y}.
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Therefore,

∫ 1

0
1{Q(u|x) + tht(u|x) ≤ y}du− ∫ 1

0
1{Q(u|x) ≤ y}du

t
(A.1)

≤
K(y|x)∑

k=1

∫

Bε(uk(y|x))

1{Q(u|x) + t(h(uk(y|x)|x)− δ) ≤ y} − 1{Q(u|x) ≤ y}
t

du,

which by the change of variables y′ = Q(u|x) is equal to

1

t

K(y|x)∑

k=1

∫

Jk∩[y,y−t(h(uk(y|x)|x)−δ)]

1

|Q′(Q−1(y′|x)|x)|dy′,

where Jk is the image of Bε(uk(y|x)) under u 7→ Q(·|x). The change of variables is

possible because for ε small enough, Q(·|x) is one-to-one between Bε(uk(y|x)) and Jk.

Fixing ε > 0, for t → 0, we have that Jk ∩ [y, y − t(h(uk(y|x)|x) − δ)] = [y, y −
t(h(uk(y|x)|x) − δ)], and |Q′(Q−1(y′|x)|x)| → |Q′(uk(y|x)|x)| as Q−1(y′|x) → uk(y|x).

Therefore, the right hand term in (A.1) is no greater than

K(y|x)∑

k=1

−h(uk(y|x)|x) + δ

|Q′(uk(y|x)|x)| + o (1) .

Similarly
∑K(y|x)

k=1
−h(uk(y|x)|x)−δ
|Q′(uk(y|x)|x)| + o (1) bounds (A.1) from below. Since δ > 0 can be

made arbitrarily small, the result follows.

To show that the result holds uniformly in (y, x) ∈ K, a compact subset of YX ∗, we

use Lemma 1. Take a sequence of (yt, xt) in K that converges to (y, x) ∈ K, then the

preceding argument applies to this sequence, since (1) the function (y, x) 7→ −h(uk(y|x)|x)
|Q′(uk(y|x)|x)|

is uniformly continuous on K, and (2) the function (y, x) 7→ K(y|x) is uniformly con-

tinuous on K. To see (2), note that K excludes a neighborhood of critical points

(Y \ Y∗x, x ∈ X ), and therefore can be expressed as the union of a finite number of com-

pact sets (K1, ..., KM) such that the function K(y|x) is constant over each of these sets,

i.e., K(y|x) = kj for some integer kj > 0, for all (y, x) ∈ Kj and j ∈ {1, ..., M}. Likewise,

(1) follows by noting that the limit expression for the derivative is continuous on each of

the sets (K1, ..., KM) by the assumed continuity of h(u|x) in both arguments, continuity

of uk(y|x) (implied by the Implicit Function Theorem), and the assumed continuity of

Q′(u|x) in both arguments. ¤
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Proof of Proposition 3. For a fixed x the result follows by Proposition 2, by step

1 of the proof below, and by an application of the Hadamard differentiability of the

quantile operator shown by Doss and Gill (1992). Step 2 establishes uniformity over

x ∈ X .

Step 1. Let K be a compact subset of YX ∗. Let (yt, xt) be a sequence in K, convergent

to a point, say (y, x). Then, for every such sequence, εt := t‖ht‖∞+‖Q(·|xt)−Q(·|x)‖∞+

|yt − y| → 0, and

|F (yt|xt, ht)− F (y|x)| ≤
∣∣∣
∫ 1

0

[1{Q(u|xt) + tht(u|x) ≤ yt} − 1{Q(u|x) ≤ y}]du
∣∣∣

≤
∣∣∣
∫ 1

0

1{|Q(u|x)− y| ≤ εt}du
∣∣∣ → 0, (A.2)

where the last step follows from the absolute continuity of y 7→ F (y|x), the distribution

function of Q(U |x). By setting ht = 0 the above argument also verifies that F (y|x)

is continuous in (y, x). Lemma 1 implies uniform convergence of F (y|x, ht) to F (y|x),

which in turn implies by a standard argument1 the uniform convergence of quantiles

F−1(u|x, ht) → F−1(u|x), uniformly over K∗, where K∗ is any compact subset of UX ∗.

Step 2. We have that uniformly over K∗,

F (F−1(u|x, ht)|x, ht)− F (F−1(u|x, ht)|x)

t
= Dh(F

−1(u|x, ht)|x) + o(1),

= Dh(F
−1(u|x)|x) + o(1),

(A.3)

using Step 1, Proposition 2, and the continuity properties of Dh(y|x). Further, uniformly

over K∗, by Taylor expansion and Proposition 1, as t → 0,

F (F−1(u|x, ht)|x)− F (F−1(u|x)|x)

t
= f(F−1(u|x)|x)

F−1(u|x, ht)− F−1(u|x)

t
+ o(1),

(A.4)

and (as will be shown below)

F (F−1(u|x, ht)|x, ht)− F (F−1(u|x)|x)

t
= o(1), (A.5)

as t → 0. Observe that the left hand side of (A.5) equals that of (A.4) plus that of

(A.3). The result then follows.

1See, e.g., Lemma 1 in Chernozhukov and Fernandez-Val (2005).
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It only remains to show that equation (A.5) holds uniformly in K∗. Note that for any

right-continuous cdf F , we have that u ≤ F (F−1(u)) ≤ u + F (F−1(u)) − F (F−1(u)−),

where F (·−) denotes the left limit of F , i.e., F (x0−) = limx↑x0 F (x). For any continuous,

strictly increasing cdf F , we have that F (F−1(u)) = u. Therefore, write

0 ≤ F (F−1(u|x, ht)|x, ht)− F (F−1(u|x)|x)

t

≤ u + F (F−1(u|x, ht)|x, ht)− F (F−1(u|x, ht)− |x, ht)− u

t

≤ F (F−1(u|x, ht)|x, ht)− F (F−1(u|x, ht)− |x, ht)

t

(1)
=

[F (F−1(u|x, ht)|x, ht)− F (F−1(u|x, ht)|x)]

t

− [F (F−1(u|x, ht)− |x, ht)− F (F−1(u|x, ht)− |x)]

t
(2)
= Dh(F

−1(u|x, ht)|x)−Dh(F
−1(u|x, ht)− |x) + o(1) = o(1),

as t → 0, where in (1) we use that F (F−1(u|x, ht)|x) = F (F−1(u|x, ht)−|x) since F (y|x)

is continuous and strictly increasing in y, and in (2) we use Proposition 2. ¤

The following lemma, due to Pratt (1960), will be very useful to prove Proposition 4.

Lemma 2. Let |fn| ≤ Gn and suppose that fn → f and Gn → G almost everywhere,

then if
∫

Gn →
∫

G finite, then
∫

fn →
∫

f .

Proof of Lemma 2. See Pratt (1960). ¤

Lemma 3 (Boundedness and Integrability Properties). Under the hypotheses of Propo-

sition 2 and 3, we have that for all (y, x) ∈ YX :

|D̃ht(u|x, t)| ≤ ‖ht‖∞, (A.6)

and

|Dht(y|x, t)| ≤ ∆(y|x, t) =

∫ 1

0

1{|Q(u|x)− y| ≤ t‖ht‖∞}
t

du, (A.7)

where for any xt → x ∈ X , as t → 0,

∆(y|xt, t) → 2‖h‖∞f(y|x) for a.e y ∈ Y and

∫

Y
∆(y|xt, t)dy →

∫

Y
2‖h‖∞f(y|x)dy.
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Proof of Lemma 3. To show (A.6) note that

sup
x∈X ,y∈Y

|D̃ht(y|x, t)| ≤ ‖ht‖∞ (A.8)

immediately follows from the equivariance property noted in Claim (5) of Proposition 1.

The inequality (A.7) is trivial. That for any xt → x ∈ X , ∆(y|xt, t) → 2‖h‖∞f(y|x)

for a.e y ∈ Y follows by applying Proposition 2 respectively with functions h′t(u|x) =

‖ht‖∞ and h′t(u, x) = −‖ht‖∞ (for the case when f(y|x) > 0; and trivially otherwise).

Similarly, that for any yt → y ∈ Y , ∆(yt|x, t) → 2‖h‖∞f(y|x) for a.e x ∈ X follows by

Proposition 2 (for the case when f(y|x) > 0; and trivially otherwise) .

Further, by Fubini’s Theorem,
∫

Y
∆(y|xt, t)dy =

∫ 1

0

(∫

Y

1{|Q(u|xt)− y| ≤ t‖ht‖∞}
t

dy

)

︸ ︷︷ ︸
=: ft(u)

du. (A.9)

Note that ft(u) ≤ 2‖ht‖∞. Moreover, for almost every u, ft(u) = 2‖ht‖∞ for small

enough t, and 2‖ht‖∞ converges to 2‖h‖∞ as t → 0. Then, trivially, 2
∫ 1

0
‖ht‖∞du →

2‖h‖∞. By Lemma 2 the right hand side of (A.9) converges to 2‖h‖∞. ¤

A.3. Proof of Proposition 4. Define mt(y|x, y′) := 1{y ≤ y′}g(y|x)Dht(y|x, t) and

m(y|x, y′) := 1{y ≤ y′}g(y|x)Dh(y|x). To show claim (1), we need to demostrate that

for any y′t → y′ and xt → x
∫

Y
mt(y|xt, y

′
t)dy →

∫

Y
m(y|x, y′)dy, (A.10)

and that the limit is continuous in (x, y′). We have that |mt(y|xt, yt)| is bounded, for

some constant C, by C∆(y|xt, t) which converges a.e. and the integral of which converges

to a finite number by Lemma 3. Moreover, by Proposition 2, for almost every y we have

mt(y|xt, y
′
t) → m(y|x, y′). We conclude that (A.10) holds by Lemma 2.

In order to check continuity, we need to show that for any y′t → y′ and xt → x
∫

Y
m(y|xt, y

′
t)dy →

∫

Y
m(y|x, y′)dy. (A.11)

We have that m(y|xt, y
′
t) → m(y|x, y′) for almost every y. Moreover, m(y|xt, yt) is

dominated by ‖g‖∞‖h‖∞f(y|xt), which converges to ‖g‖∞‖h‖∞f(y|x) for almost every
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y, and, moreover,
∫
Y ‖g‖∞‖h‖∞f(y|x)dy converges to ‖g‖∞‖h‖∞. Conclude that (A.11)

holds by Lemma 2.

To show claim (2), define mt(u|x, u′) = 1{u ≤ u′}g(u|x)D̃ht(u|x) and m(u|x, u′) =

1{u ≤ u′}g(u|x)D̃h(u|x). Here we need to show that for any u′t → u′ and xt → x
∫

U
mt(u|xt, u

′
t)du →

∫

U
m(u|x, u′)du, (A.12)

and that the limit is continuous in (u′, x). We have that mt(u|xt, u
′
t) is bounded by

g(u|xt)‖ht‖∞, which converges to g(u|x)‖h‖∞ for a.e. u. Furthermore, the integral of

g(u|xt)‖ht‖∞ converges to the integral of g(u|x)‖h‖∞ by the dominated convergence

theorem. Moreover, by Proposition 2, we have that mt(u|xt, u
′
t) → m(u|x, u′) for almost

every u. We conclude that (A.12) holds by Lemma 2.

In order to check the continuity of the limit, we need to show that for any u′t → u′

and xt → x ∫

U
m(u|xt, u

′
t)du →

∫

U
m(u|x, u′)du. (A.13)

We have that m(u|xt, u
′
t) → m(u|x, u′) for almost every u. Moreover, for small enough

t, m(u|xt, u
′
t) is dominated by |g(u|xt)|‖h‖∞, which converges for almost every value of

u to |g(u|x)|‖h‖∞ as t → 0. Furthermore, the integral of |g(u|xt)|‖h‖∞ converges to the

integral of |g(u|x)|‖h‖∞ by dominated convergence theorem. We conclude that (A.13)

holds by Lemma 2. ¤

The following lemma will be used to prove Proposition 5:

Lemma 4. Assume that Q(u) is a function mapping U := (0, 1) to K, a bounded subset

of R, and that Q0(u) is a non-decreasing function mapping U to K. Think of Q(u)

as an approximation to Q0(u). Let FQ(y) =
∫
U 1{Q(u) ≤ y}du denote the distribution

function of Q(U) when U ∼ U(0, 1). Let Q∗(u) = F−1
Q (u) = inf{y ∈ R : FQ(y) ≥ u}.

Then, for any p ∈ [1,∞],
[∫

U
|Q0(u)−Q∗(u)|p du

]1/p

≤
[∫

U
|Q0(u)−Q(u)|p du

]1/p

.

Moreover, this inequality is strict provided (1) p ∈ (1,∞), (2) Q(u) is decreasing on

a subset of U that has positive Lebesgue measure, and (3) the true function Q0(u) is

increasing on U .
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Proof of Lemma 4. A direct proof of this lemma is given in Proposition 1 of

Chernozhukov, Fernandez-Val, Galichon (2006a). It is helpful to give a quick indirect

proof of the weak inequality contained in the lemma using the following inequality due

to Lorentz (1953): Let Q and G be two functions mapping U to K, a bounded subset

of R. Let Q∗ and G∗ denote their corresponding increasing rearrangements. Then, we

have ∫

U
L(Q∗(u), G∗(u))du ≤

∫

U
L(Q(u), G(u))du,

for any submodular discrepancy function L : R2 7→ R+ In our case, G(u) = Q0(u) =

G∗(u) = Q∗
0(u) almost everywhere. Thus, the true function is its own rearrangement.

Moreover, L(v, w) = |w − v|p is submodular for p ∈ [1,∞). For the proof of the strict

inequality, please refer to Chernozhukov, Fernandez-Val, Galichon (2006a), Proposition

1. For p = ∞, the inequalities follows by taking limit as p →∞. ¤

A.4. Proof of Proposition 5. This proposition is an immediate consequence of Lemma

4. ¤

A.5. Proof of Proposition 6. This Proposition simply follows by the functional delta

method (e.g. van der Vaart, 1998). Instead of restating what this method is, it takes

less space to simply recall the proof in the current context.

To show the first part, consider the map gn(y, x|h) =
√

n(F (y|x, n−1/2h) − F (y|x)).

The sequence of maps satisfies gn′(y, x|hn′) → Dh(y|x) in `∞(K) for every subsequence

hn′ → h in `∞(UX ∗), where h is continuous. It follows by the Extended Continuous Map-

ping Theorem that, in `∞(K), gn(y, x|√n(Q̂(u|x)−Q(u|x))) ⇒ DG(y|x) as a stochastic

process indexed by (y, x), since
√

n(Q̂(u|x)−Q(u|x)) ⇒ G(u|x) in `∞(K).

Conclude similarly for the second part. ¤

A.6. Proof of Proposition 7. This follows by the functional delta method, similarly

to the proof of Proposition 6. ¤
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