13 research outputs found

    Subject Index Volumes 1–200

    Get PDF

    Structure and Interpretation of Computer Programs

    Get PDF
    Structure and Interpretation of Computer Programs has had a dramatic impact on computer science curricula over the past decade. This long-awaited revision contains changes throughout the text. There are new implementations of most of the major programming systems in the book, including the interpreters and compilers, and the authors have incorporated many small changes that reflect their experience teaching the course at MIT since the first edition was published. A new theme has been introduced that emphasizes the central role played by different approaches to dealing with time in computational models: objects with state, concurrent programming, functional programming and lazy evaluation, and nondeterministic programming. There are new example sections on higher-order procedures in graphics and on applications of stream processing in numerical programming, and many new exercises. In addition, all the programs have been reworked to run in any Scheme implementation that adheres to the IEEE standard

    Quantum Computation with Topological Codes: from qubit to topological fault-tolerance

    Full text link
    This is a comprehensive review on fault-tolerant topological quantum computation with the surface codes. The basic concepts and useful tools underlying fault-tolerant quantum computation, such as universal quantum computation, stabilizer formalism, and measurement-based quantum computation, are also provided in a pedagogical way. Topological quantum computation by brading the defects on the surface code is explained in both circuit-based and measurement-based models in such a way that their relation is clear. The interdisciplinary connections between quantum error correction codes and subjects in other fields such as topological order in condensed matter physics and spin glass models in statistical physics are also discussed. This manuscript will be appeared in SpringerBriefs.Comment: 155 pages, 133 figures, this manuscript will be appeared in SpringerBriefs, comments are welcom

    Annales Mathematicae et Informaticae (41.)

    Get PDF

    Author index to volumes 301–400

    Get PDF

    The benefits of an additional practice in descriptive geomerty course: non obligatory workshop at the Faculty of Civil Engineering in Belgrade

    Get PDF
    At the Faculty of Civil Engineering in Belgrade, in the Descriptive geometry (DG) course, non-obligatory workshops named “facultative task” are held for the three generations of freshman students with the aim to give students the opportunity to get higher final grade on the exam. The content of this workshop was a creative task, performed by a group of three students, offering free choice of a topic, i.e. the geometric structure associated with some real or imagery architectural/art-work object. After the workshops a questionnaire (composed by the professors at the course) is given to the students, in order to get their response on teaching/learning materials for the DG course and the workshop. During the workshop students performed one of the common tests for testing spatial abilities, named “paper folding". Based on the results of the questionnairethe investigation of the linkages between:students’ final achievements and spatial abilities, as well as students’ expectations of their performance on the exam, and how the students’ capacity to correctly estimate their grades were associated with expected and final grades, is provided. The goal was to give an evidence that a creative work, performed by a small group of students and self-assessment of their performances are a good way of helping students to maintain motivation and to accomplish their achievement. The final conclusion is addressed to the benefits of additional workshops employment in the course, which confirmhigherfinal scores-grades, achievement of creative results (facultative tasks) and confirmation of DG knowledge adaption
    corecore