285,077 research outputs found
Thin-disk laser pump schemes for large number of passes and moderate pump source quality
Novel thin-disk laser pump layouts are proposed yielding an increased number
of passes for a given pump module size and pump source quality. These novel
layouts result from a general scheme which bases on merging two simpler pump
optics arrangements. Some peculiar examples can be realized by adapting
standard commercially available pump optics simply by intro ducing an
additional mirror-pair. More pump passes yield better efficiency, opening the
way for usage of active materials with low absorption. In a standard multi-pass
pump design, scaling of the number of beam passes brings ab out an increase of
the overall size of the optical arrangement or an increase of the pump source
quality requirements. Such increases are minimized in our scheme, making them
eligible for industrial applicationsComment: 16 pages, 9 figure
Pump-probe scheme for optical coherence tomography using indocyanine green mixed with albumin or human plasma
Use of indocyanine green (ICG) in a pump-probe scheme for OCT is proposed. The study illustrates that ICG in protein solution shows unusual pump-probe imaging potential, indicating its usefulness as a contrast agent for OCT
A robust high-efficiency cross-coupled charge pump circuit without blocking transistors
This document is the Accepted Manuscript version of the following article: Minglin Ma, Xinglong Cai, Yichuang Sun, and Nike George, ‘A robust high-efficiency cross-coupled charge pump circuit without blocking transistors’, Analog Integrated Circuits and Signal Processing, Vol. 95 (3): 395-401, June 2018. Under embargo until 16 March 2019. The final publication is available at Springer via: https://doi.org/10.1007/s10470-018-1149-xA fully integrated cross-coupled charge pump circuit with a new clock scheme has been presented in this paper. The new clock scheme ensures that all NMOS pre-charge transistors are turned off when the voltages of main clock signals are high. Notably, all PMOS transfer transistors will be turned off when the voltages of the main clock signals are low. As a result, the charge pump eliminates all of the reversion power loss and reduces the ripple voltage. The proposed charge pump has a better performance even in scenarios where the main clock signals are mismatched. The proposed charge pump circuit was simulated using spectre in the TSMC 0.18 µm CMOS process. The simulation results show that the proposed charge pump circuit has a high voltage conversion efficiency and low ripple voltage.Peer reviewe
Bell State Preparation using Pulsed Non-Degenerate Two-Photon Entanglement
We report a novel Bell state preparation experiment. High-purity Bell states
are prepared by using femtosecond pulse pumped \emph{nondegenerate} collinear
spontaneous parametric down-conversion. The use of femtosecond pump pulse {\em
does not} result in reduction of quantum interference visibility in our scheme
in which post-selection of amplitudes and other traditional mechanisms, such
as, using thin nonlinear crystals or narrow-band spectral filters are not used.
Another distinct feature of this scheme is that the pump, the signal, and the
idler wavelengths are all distinguishable, which is very useful for quantum
communications.Comment: 4 pages, submitted to PR
Two-layer scheduling scheme for pump stations
Trabajo presentado a la IEEE Conference on Control Applications (CCA) celebrada en Juan-les-Pins, Antibes (Francia) del 8 al 10 de octubre de 2014.In this paper, a two-layer scheduling scheme for pump stations in a water distribution network has been proposed. The upper layer, which works in one-hour sampling time, uses Model Predictive Control (MPC) to produce continuous flow set-points for the lower layer. While in the lower layer, a scheduling algorithm has been used to translate the continuous flow set-points to a discrete (ON-OFF) control operation sequence of the pump stations with the constraints that pump stations should draw the same amount of water as the continuous flow set-points provided by the upper layer. The tuning parameters of such algorithm are the lower layer control sampling period and the number of parallel pumps in the pump station. The proposed method has been tested in the Richmond case study.This work has been funded by the Spanish Ministry of Science and Technology through the project CYCYT WATMAN DPI2009-13744 and also funded by EFFINET grant FP7-ICT-2012-318556 of the European Commission.Peer Reviewe
Universal optical amplification without nonlinearity
We propose and experimentally realize a new scheme for universal
phase-insensitive optical amplification. The presented scheme relies only on
linear optics and homodyne detection, thus circumventing the need for nonlinear
interaction between a pump field and the signal field. The amplifier
demonstrates near optimal quantum noise limited performance for a wide range of
amplification factors.Comment: 5 pages, 4 figure
High Efficiency Cross-Coupled Charge Pump Circuit with Four-Clock Signals
© Allerton Press, Inc. 2018A fully integrated cross-coupled charge pump circuit for boosting dc-to-dc converter applications with four-clock signals has been proposed. With the new clock scheme, this charge pump eliminates all of the reversion power loss and reduces the ripple voltage. In addition, the largest voltage differences between the terminals of all transistors do not exceed the power supply voltage for solving the gate-oxide overstress problem in the conventional charge pump circuits and enhancing the reliability. This proposed charge pump circuit does not require any extra level shifter; therefore, the power efficiency is increased. The proposed charge pump circuit has been simulated using Spectre in the TSMC 0.18 μm CMOS process. The simulation results show that the maximum voltage conversion efficiency of the new 3-stage cross-coupled circuit with an input voltage of 1.5Vis 99.8%. According to the comparison results of the conventional pump and the enhanced charge pump proposed, the output ripple voltage has been significantly reduced.Peer reviewe
- …
