306,162 research outputs found

    The pick-up of cometary protons by the solar wind

    Get PDF
    The High Energy Range Spectrometer (HERS) of the Ion Mass Spectrometer on the Giotto spacecraft measured the 3-dimensional distribution of picked-up cometary protons over a distance of approximately 8 million km upstream of the bow shock of Comet Halley. The protons were observed to be elastically scattered out of their original cycloidal trajectories such that they were nonuniformly distributed over a spherical shell in velocity space. The shell radius (relative to its expected radius) and thickness increased as the bow shock was approached. Downstream of the shock, the cometary protons could not be distinguished from the heated solar wind protons

    Weak capture of protons by protons

    Get PDF
    The cross section for the proton weak capture reaction 1H(p,e+νe)2H^1H(p,e^+\nu_e)^2H is calculated with wave functions obtained from a number of modern, realistic high-precision interactions. To minimize the uncertainty in the axial two-body current operator, its matrix element has been adjusted to reproduce the measured Gamow-Teller matrix element of tritium β\beta decay in model calculations using trinucleon wave functions from these interactions. A thorough analysis of the ambiguities that this procedure introduces in evaluating the two-body current contribution to the pp capture is given. Its inherent model dependence is in fact found to be very weak. The overlap integral Λ2(E=0)\Lambda^2(E=0) for the pp capture is predicted to be in the range 7.05--7.06, including the axial two-body current contribution, for all interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure

    Rapidity dependence of deuteron production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-protons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the "volume of homogeneity" and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter B2(pT)B_2(p_T) and the space averaged phase-space density (pT) (p_T) are very similar for both protons and anti-protons. For protons we see little variation of either B2(pT)B_2(p_T) or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on pTp_T at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at yy=0 and both B2B_2 and ff depend strongly on rapidity.Comment: Document updated after proofs received from PR

    Study on the spectrum of the injected relativistic protons

    Full text link
    About 10TeV gamma-ray emission within 10 pc region from the Galactic Center had been reported by 4 independent groups. Considering that this TeV gamma-ray emission is produced via a hadronic model, and the relativistic protons came from the tidal disruption of stars by massive black holes, we investigate the spectral nature of the injected relativistic protons required by the hadronic model. The calculation was carried on the tidal disruption of the different types of stars and the different propagation mechanisms of protons in the interstellar medium. Compared with the observation data from HESS, we find for the best fitting that the power-law index of the spectrum of the injected protons is about -1.9, when a red giant star is tidally disrupted, and the effective confinement of protons diffusion mechanism is adopted.Comment: 2 pages, IAU Symposium 25
    • …
    corecore