30,374 research outputs found
Omnivory by the Small Cosmopolitan Hydromedusa Aglaura Hemistoma
We investigated the feeding of the small hydromedusa, Aglaura hemistoma (bell diameter \u3c 4 mm), to determine if it occupies a trophic position similar to that of large medusae. Feeding was examined using gut-content analysis of preserved and unpreserved medusae and by analyzing prey-capture events using microvideographic techniques. Analysis of gut contents and prey-capture events revealed that A. hemistoma fed heavily on protistan prey and that it possessed a prey-capture mechanism, specifically a feeding current,that is effective at entraining and capturing protists with low motility. We suggest that many species of small hydromedusae possess prey-capture mechanisms adapted to capture small protistan prey and that many of these small hydromedusae feed omnivorously on microplanktonic prey. The trophic roles of small hydromedusae in different systems are not understood and more studies are needed. However, based on their often high abundances and the cosmopolitan nature, if small hydromedusae are primarily omnivores, they need to be considered when estimating the impact of zooplankton on primary production and, more generally, protistan community dynamics
The CCAP KnowledgeBase : linking protistan and cyanobacterial biological resources with taxonomic and molecular data
Peer reviewe
Animals and Fungi are Each Other's Closest Relatives: Congruent Evidence from Multiple Proteins
Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from 25 proteins. Four insertions/deletions were found that are shared by two of the three taxonomic groups in question, and all four are uniquely shared by animals and fungi relative to plants, protists, and bacteria. These include a 12-amino acid insertion in translation elongation factor la and three small gaps in enolase. Maximum-parsimony trees were constructed from published data for four of the most broadly sequenced of the 25 proteins, actin, a-tubulin, ,ß-tubulin, and elongation factor la, with the latter supplemented by three new outgroup sequences. All four proteins place animals and fungi together as a monophyletic group to the exclusion of plants and a broad diversity of protists. In all cases, bootstrap analyses show no support for either an animal-plant or hfngal-plant dade. This congruence among multiple lines of evidence strongly suggests, in contrast to traditional and current classification, that animals and fungi are sister groups while plants constitute an independent evolutionary lineage
How to Track Protists in Three Dimensions
We present an apparatus optimized for tracking swimming microorganisms in the
size range 10-1000 microns, in three dimensions (3D), far from surfaces, and
with negligible background convective fluid motion. CCD cameras attached to two
long working distance microscopes synchronously image the sample from two
perpendicular directions, with narrowband dark-field or bright-field
illumination chosen to avoid triggering a phototactic response. The images from
the two cameras can be combined to yield 3D tracks of the organism. Using
additional, highly directional broad-spectrum illumination with millisecond
timing control the phototactic trajectories in 3D of organisms ranging from
Chlamydomonas to Volvox can be studied in detail. Surface-mediated hydrodynamic
interactions can also be investigated without convective interference. Minimal
modifications to the apparatus allow for studies of chemotaxis and other taxes.Comment: 8 pages, 7 figure
The Evolutionary Reorganization of Ontogeny and Origin of Multicellularity
The formation of morphogenetic mechanisms during emergence of multicellularity is discussed
in this article
Discrimination, Crypticity, and Incipient Taxa in Entamoeba
Persistent difficulties in resolving clear lineages in diverging populations of prokaryotes or unicellular eukaryotes (protistan polyphyletic groups) are challenging the classical species concept. Although multiple integrated approaches would render holistic taxonomies, most phylogenetic studies are still based on single-gene or morphological traits. Such methodologies conceal natural lineages, which are considered “cryptic.” The concept of species is considered artificial and inadequate to define natural populations. Social organisms display differential behaviors toward kin than to nonrelated individuals. In “social” microbes, kin discrimination has been used to help resolve crypticity. Aggregative behavior could be explored in a nonsocial protist to define phylogenetic varieties that are considered “cryptic.” Two Entamoeba invadens strains, IP-1 and VK-1:NS are considered close populations of the same “species.” This study demonstrates that IP-1 and VK-1:NS trophozoites aggregate only with alike members and discriminate members of different strains based on behavioral and chemical signals. Combined morphological, behavioral/chemical, and ecological studies could improve Archamoebae phylogenies and define cryptic varieties. Evolutionary processes in which selection acted continuously and cumulatively on ancestors of Entamoeba populations gave rise to chemical and behavioral signals that allowed individuals to discriminate nonpopulation members and, gradually, to the emergence of new lineages; alternative views that claim a “Designer” or “Creator” as responsible for protistan diversity are unfounded
Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates)
To examine the grazing effects of copepod-dominated mesozooplankton on heterotrophic microbial communities, four mesocosm experiments using gradients of zooplankton abundance were carried out at a coastal marine site. The responses of different protist groups (nanoflagellates, ciliates) and bacterioplankton in terms of abundance and additionally, for bacteria, diversity, production, and exoenzymatic activity, were monitored during 1 week of incubation. Independent of the initial experimental abiotic conditions and the dominating copepod species, zooplankton caused order-of-magnitude changes in microbial functional groups in a clear community-wide four-link trophic cascade. The strongest predatory effects were observed for protist concentrations, thus generating inverse relationships between mesozooplankton and ciliates and between ciliates and nanoplankton. Copepod grazing effects propagated even further, not only reducing the abundance, production, and hydrolytic activity of bacterioplankton but also increasing bacterial diversity. The overall strength of this trophic cascade was dampened with respect to bacterial numbers, but more pronounced with respect to bacterial diversity and activity. High predation pressure by heterotrophic nanoflagellates, realized at the highest copepod abundance, was probably the underlying mechanism for these structural changes in the bacterial assemblages. Our results thus suggest a mechanism by which changes in higher trophic levels of marine plankton indirectly affect prokaryotic assemblages and microbially mediated ecosystem functions
Protist predation can favour cooperation within bacterial species
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system
Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes
AimMeiofaunal communities that inhabit the marine benthos offer unique opportunities to simultaneously study the macroecology of numerous phyla that exhibit different life-history strategies. Here, we ask: (1) if the macroecology of meiobenthic communities is explained mainly by dispersal constraints or by environmental conditions; and (2) if levels of meiofaunal diversity surpass existing estimates based on morphological taxonomy. LocationUK and mainland European coast. MethodsNext-generation sequencing techniques (NGS; Roche 454 FLX platform) using 18S nuclear small subunit ribosomal DNA (rDNA) gene. Pyrosequences were analysed using AmpliconNoise followed by chimera removal using Perseus. ResultsRarefaction curves revealed that sampling saturation was only reached at 15% of sites, highlighting that the bulk of meiofaunal diversity is yet to be discovered. Overall, 1353 OTUs were recovered and assigned to 23 different phyla. The majority of sampled sites had c. 60-70 unique operational taxonomic units (OTUs) per site, indicating high levels of beta diversity. The environmental parameters that best explained community structure were seawater temperature, geographical distance and sediment size, but most of the variability (R-2=70%-80%) remains unexplained. Main conclusionsHigh percentages of endemic OTUs suggest that meiobenthic community composition is partly niche-driven, as observed in larger organisms, but also shares macroecological features of microorganisms by showing high levels of cosmopolitanism (albeit on a much smaller scale). Meiobenthic communities exhibited patterns of isolation by distance as well as associations between niche, latitude and temperature, indicating that meiobenthic communities result from a combination of niche assembly and dispersal processes. Conversely, isolation-by-distance patterns were not identified in the featured protists, suggesting that animals and protists adhere to radically different macroecological processes, linked to life-history strategies.Natural Environment Research Council (NERC) [NE/E001505/1, NE/F001266/1, MGF-167]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/27413/2006, SFRH/BPD/80447/2014]; EPSRC [EP/H003851/1]; BBSRC CASE studentship; Unilever; Biotechnology and Biological Sciences Research Council [987347]; Engineering and Physical Sciences Research Council [EP/H003851/1]; Natural Environment Research Council [NE/F001290/1, NE/F001266/1, NE/E001505/1, NBAF010002]info:eu-repo/semantics/publishedVersio
Animal emergence during Snowball Earths by thermosynthesis in submarine hydrothermal vents
Darwin already commented on the lateness in the fossil record of the emergence of the animals, calling it a valid argument against his theory of evolution^1^. This emergence of the animals (metazoans: multicellular animals) has therefore attracted much attention^2-5^. Two decades ago it was reported that extensive global glaciations (Snowball Earths) preceded the emergence^6-7^. Here we causally relate the emergence and the glaciations by invoking benthic sessile^8-11^ thermosynthesizing^12-13^ protists that gained free energy as ATP while oscillating in the thermal gradient between a submarine hydrothermal vent^14^ and the ice-covered ocean. During a global glaciation their size increased from microscopic to macroscopic due to the selective advantage of a larger span of the thermal gradient. At the glaciation's end the ATP-generating mechanisms reversed and used ATP to sustain movement. Lastly, by functioning as animal organs, these protists then through symbiogenesis^15-17^ brought forth the first animals. This simple and straightforward scenario for the emergence of animals accounts for their large organ and organism size and their use of ATP, embryo and epigenetic control of development. The scenario is extended to a general model for the emergence of biological movement^18^. The presented hypothesis is testable by collecting organisms near today's submarine hydrothermal vents and studying their behaviour in the laboratory in easily constructed thermal gradients
- …
