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<abs> Darwin already commented on the lateness in the fossil record of the emergence of the 

animals, calling it a valid argument against his theory of evolution1. This emergence of the 

animals (metazoans: multicellular animals) has therefore attracted much attention2-5. Two 

decades ago it was reported that extensive global glaciations (Snowball Earths) preceded the 

emergence6-7. Here we causally relate the emergence and the glaciations by invoking benthic 

sessile8-11 thermosynthesizing12-13 protists that gained free energy as ATP while oscillating in 

the thermal gradient between a submarine hydrothermal vent14 and the ice-covered ocean. 

During a global glaciation their size increased from microscopic to macroscopic due to the 

selective advantage of a larger span of the thermal gradient. At the glaciation’s end the ATP-

generating mechanisms reversed and used ATP to sustain movement. Lastly, by functioning as 

animal organs, these protists then through symbiogenesis15-17 brought forth the first animals. 

This simple and straightforward scenario for the emergence of animals accounts for their large 

organ and organism size and their use of ATP, embryo and epigenetic control of development. 

The scenario is extended to a general model for the emergence of biological movement18. The 

presented hypothesis is testable by collecting organisms near today’s submarine hydrothermal 

vents and studying their behaviour in the laboratory in easily constructed  thermal gradients. 

<p> In On the Origin of Species Darwin remarked on the lateness and abruptness of the 

emergence of the animals: “To the question of why we do not find records of  the vast 

primordial periods, I can give no satisfactory answer.” and “The case at present must remain 

inexplicable; and may be truly urged as a valid argument against the views here entertained.” 

The emergence was later dated near the Varanger-Ediacaran boundary of the late Proterozoic, 
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with the Varanger being one out of a series of intense global glaciations called ‘Snowball 

Earths’ 6-7 (Fig. 1).  

<p> In On the Origin of Species Darwin remarked on the lateness and abruptness of the 

emergence of the animals: “To the question of why we do not find records of  the vast 

primordial periods, I can give no satisfactory answer.” and “The case at present must remain 

inexplicable; and may be truly urged as a valid argument against the views here entertained.” 

The emergence was later dated near the Varanger-Ediacaran boundary of the late Proterozoic, 

with the Varanger being one out of a series of intense global glaciations called ‘Snowball 

Earths’ 6-7 (Fig. 1).  

<p> Due to the free energy available in their gradients, submarine hydrothermal vents  can 

have played an important role in evolution. A complete ice-cover of the ocean may have forced 

life on Earth to retreat to these submarine hydrothermal vents, which therefore may have 

constituted a refugium19, and we relate the emergence to benthic sessile thermosynthesizing 

protists that lived there.   

<p> Thermosynthesis12-13 refers to a theoretical free energy gain mechanism that 

worked on thermal cycling using a thermal variation of the binding change mechanism20 of 

today’s ATP Synthase (Fig. 2a-b).  A single thermosynthesizing ‘First Protein’ (FP) has been 

applied in a model for the origin of life that accounts for the emergence of the hereditary 

machinery, including the genetic code, and the emergence of bacterial photosynthesis, 

including the emergence of the chemiosmotic machinery. Suspension in convecting volcanic 

springs brought about the thermal cycling (Fig. 2c).  

<p> In sunlight thermosynthesizers lose the competition to photosynthesizers. 

Intermittent scarcity of light during global glaciations or large volcanic eruptions must however 

often temporarily have favoured thermosynthesis. Short-time presence during evolution of 

sessile thermosynthesizers is therefore plausible. They can have sustained major evolutionary 



3 

advances, and may in particular have brought about novel methods to implement biological 

movement (Table 1). 

<p> During evolution active biological movement cannot have started very small, say on 

the scale of proteins or bacteria, since viscosity dominates inertia on this length scale. It is 

inefficient to put small objects in motion. The domination is characterized by the Reynolds 

number Re, the ratio of inertial and viscous (frictional) forces: 

<fd> Re = v L ρ / η = v L / υ, 

<p> where v is the speed of the fluid, L a relevant length, ρ the fluid density, η the fluid 

viscosity, and υ = η / ρ the dynamic viscosity of the fluid3,18. At low Reynolds number 

repetitive movement such as swimming cannot cause displacement18: the organism 

remains at the same spot (although rotation such as by the bacterial flagellum can cause 

displacement18). When a small biological object changes its shape after a temperature 

change, this change is not hampered by the high viscosity of a low Reynolds number. 

The origin of biological movement is attributed to such thermal shape changes (just 

recently, small engineered devices that similarly change shape by thermal cycling have 

been reported23).  

<p> By attaching FPs to objects oscillating due to cyclic thermal expansion and 

contraction, ATP or other high free energy compounds were generated. Extensive 

global glaciations lasted tens of millions of years. There was therefore enough 

evolutionary time for the size of sessile thermosynthesizers to increase: the larger span 

of the thermal gradient gave the selective advantage of a higher energy gain through a 

higher amplitude of the thermal cycle. Some oscillations were preadaptations for ATP 

driven movement after the reversal at the end of the glaciation, when regular ATP 

sources again became available. 
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<p> To the ~ 2900 Mya glaciation22 the emergence of a thermotether is attributed (Fig. 

2d), a filamentous protein that oscillated in the thermal gradient by cold denaturation24-25 (Table 

1). Connection to the thermotether turned the planktonic thermosynthesizer of Fig. 2c into a 

sessile thermosynthesizer. Emergence of the bacterial flagellar motor from the thermotether has 

been modeled, with a progenitor pumping protons across the cell membrane during thermal 

cycling11. In the model protons pumped by photosynthesis or respiration at the end of the 

glaciation reversed the process and caused the thermotether to function as the flagellum of the 

bacterial flagellar motor.  

<p> The acritarchs found after the next global glaciation of  ~ 2200 Mya are 

commonly held to be eukaryotes. Similar to Margulis15, we assume their emergence by 

endosymbiosis of prokaryotes; we also assume that acquired histones present in prokaryotes 

such as Thermoplasma yielded chromatin. This chromatin permitted epigenetic control23 that 

facilitated symbiogenesis by enabling gene silencing in the chimera genome obtained from 

merged symbionts.  

 

<p> We propose the emergence of the eukaryotic cell from a symbiont15-17 consisting 

of a thermotether/prokaryote combination that functioned inside a sessile thermosynthesizing 

prokaryote. The thermotether was a progenitor of filamentous proteins such as microtubule and 

actin, and the First Protein the common progenitor of  kinesin, dynein and myosin, which 

emerged upon the reversal; this reversal became possible after endosymbiosis15-17 with the 

progenitors of today’s mitochondria had added an ATP source. Symbiosis is common in 

protists15-17. 

<p> In the late Proterozoic, during the Varanger Snowball Earth, the three major 

emerged preadaptations were: (1) a larger thermotether (Fig. 2f-j), (2) the thermopharynx (Fig. 

2k), and (3) the thermotentacle (Fig. 2m). The enlarged thermotether eventually formed a 

symbiont with the thermopharynx, that after the reversal became the frond of Fig. 1b. The 
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thermopharynx contained a cyclically opening and closing entry to the same body cavity as 

present in the sponge. Addition of thermotentacles (Fig. 2l) yielded the progenitors of the 

Ediacaran anemones. Figure 3 gives an overview of the emergence of the macroscopic 

Ediacaran animals. 

<p> The preadaptations that emerged during the short glaciation at the start of the 

Cambrium were (1) the thermoprecipitate and (2) the use of the thermal diffusion potential. 

The thermoprecipitate involved a high temperature precipitation of CaCO3 and Ca-phosphate 

that yielded protons27 which generated ATP by chemiosmosis, using an ATP Synthase in the 

membrane of the body cavity of a thermopharynx organism. The precipitate would have been 

removed together with the ocean water heated during the working cycle of the thermopharynx. 

<p> The use of the thermal diffusion potential28 was the most complex of the proposed 

preadaptations, and concerns a little known phenomenon (see Supplementary Information). A 

thermal gradient generates in solution an electric potential, which in general has only a small 

value, ~ 0,5 mV/°C that varies with the ionic composition of the medium (H+ and OH- give 

relative large values).  Where a macroscopic filamentous membrane spans a large temperature 

difference and the medium composition at the two sides of the membrane differs strongly, an 

electrical voltage difference of ~ 40 mV seems feasible that could suffice for chemiosmosis by 

ATP Synthase at a high H+/ATP ratio. 

 

<p> The reversal yielded the skeleton and the nerve.  The single-organ protists that had 

emerged in the Ediacaran and Cambrian then formed by symbiogenesis15-17 the numerous 

multicellular and multiple-organ animals (metazoans) of the Cambrian explosion (Fig. 4). Note 

that Empedocles already proposed such a mechanism for the formation of large organisms from 

independently living smaller ones. 
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<p> This symbiogenesis was complex: first the symbiont was formed from rightly 

positioned independent protists. Next their genomes merged. The cells of the chimera 

functioned as embryonic stem cells that by epigenetic control differentiated into the many cell 

types of an animal and then migrated to the position held in the progenitor symbiont. During 

symbiogenesis the external functionality of the animal did not change but the internal 

functionality with the acquired development capability became much more complex. The first 

embryo fossils are dated at the end of the Marinoan and Varanger Snowball Earths29. 

<p> Thereafter the animals obviously continued to evolve, but because of its 

complexity, the macroevolutionary symbiogenesis was a non-repeatable one-off on the path 

from root to branch on the evolutionary tree. In the descendants in addition to microevolution 

only other types of macroevolution were possible, and change was gradual. As a result the 

proposed contributors to animal symbiogenesis still are recognizable in today’s four types of 

animal tissue: epithelium, connective tissue, muscle, and nerve. The collagen of epithelium 

relates to the thermotentacle, although connective tissue of course contains collagen as well. 

The skeleton can be related to a combination of the thermotentacle and the thermoprecipitate. 

Clearly, muscle would have the contracting thermotether as progenitor, and the nerve with is 

action potential  would descend from a protist that made use of the thermal diffusion potential.  

 

<p> We conclude that a consistent and comprehensive scenario can be formulated 

based on macroevolution through symbiogenesis for the emergence during global glaciations of 

the multicellular animals from protists near submarine hydrothermal vents. Their large size was 

the result of its advantage during thermosynthesis. Emergence of the embryo and epigenetics is 

accounted for. Darwin’s problem of the late emergence of animals is explained by a 

requirement for global glaciations, which occurred only late in Earth’s history. More generally, 

previously proposed environmental fluctuations that can accelerate evolution30 are associated 

with the Earth’s global glaciations. Emergence of biological movement, i.e. the bacterial 
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flagellar motor, and the movement of ATPases along filamentous proteins, is also explained by 

reversal of preadaptations that emerged in sessile thermosynthesizers during these global 

glaciations. Thermosynthesizers were suitable hosts for endosymbiosis. The contribution of 

symbiosis to evolution17 seems just as important as the contribution of natural selection; these 

two disparate and complementary notions would have equal standing, being comparable to 

Empedocles’ love and strife. In addition to the origin of life, thermosynthesis can also explain 

the emergence of the animals by a simple and robust scenario. 
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<LEGEND> Figure 1 | The Snowball Earths of the late Proterozoic and the Ediacaran 

organisms. a, Photosynthesis prefers the faster diffusing 12C isotope of carbon in CO2. 

Subduction of the ocean floor removes the 12C enriched remains of organisms from the 

biosphere, leaving the 13C. During a low global photosynthesis rate, such as during a global 

glaciation, less 12C is removed and carbonate precipitated on the ocean floor then contains a 

lower 13C /12C ratio. Global glaciations inferred from isotope ratios in carbonate deposits are 

named the Sturtian, Marinoan and the Varanger. At the beginning of the Cambrian a global 

glaciation occurred as well. The fossils of the first animals are found right after the Varanger; 

fossils resembling animal embryos are found at the end of the Varanger but also already at the 

end of the Marinoan.  b, Macroscopic animal fossils found in the Ediacaran comprise the fern-

resembling fronds and anemones. The sizes of the fossils range from a few cm to almost 2 m. 
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<LEGEND> Figure 2 | Thermosynthesis mechanisms. a, Thermosynthesis12 is based on a 

thermal variation of the binding change mechanism of today’s ATP Synthase20. Its β-subunit 

binds ADP and phosphate, and forms ATP that remains bound until free energy generated by a 

charged membrane opens the enzyme and enables the ATP to leave. b, In the proposed First 

Protein (FP) bound ATP was similarly formed but it was instead released by thermal unfolding, 

either at high or at low temperature (hot or cold denaturation). During the origin of life this 

condensation was non-specific, and also yielded peptide and phosphodiester bonds12,13.  c, The 

required repeated thermal cycling was effected by suspension in a convecting volcanic hot 

spring. In this cartoon the FP unfolds by hot denaturation. Sessile thermosynthesizers.  

Oscillation in a thermal gradient instead of convection drove thermal cycling. d, Operating 

cycle of the thermotether.  Attached to the hydrothermal vent, the thermotether at high 

temperature folded into a compressed state, expanded, and made thermal contact with the cold 

ocean water, whereafter it denatured again and contracted. e Connection of a cell containing 

FPs to the thermotether yielded a thermally cycled, and thermosynthesizing, cell. Emergence, 

at increasing size, of the Ediacaran frond. f, Addition of a calcified holdvast to the 

thermotether. g, Addition of a bending stalk yielded a larger and stronger connection between 

the holdfast and the main body, permitting a wider range of oscillating movement. h, Connection 

of the thermotether to the stalk further enhanced the movement range. i, Addition of a fractally 

grown structure yielded a larger organism, the ‘thermofrond’. j, The Ediacaran frond emerged 

when the thermal cycling requirement became superfluous at the end of the glaciation and 

movement became ATP driven. Small symbiotic sponges —derived from the thermopharynx— 

had been added. k, Operating cycle of the thermopharynx. At the start the entry to the body 

cavity or sac was closed after the protein in the thermopharynx had contracted by cold 

denaturation. The cold water in the cavity warmed up, where after the thermopharynx also 

warmed, the entry protein folded and the entry opened. The warm water in the cavity was 

replenished by cold ocean water, and the entry closed as the entry protein cooled, unfolded and 

contracted. The organism resembled a sponge. l, Addition of thermotentacles. m, Operating 
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cycle of the thermotentacle. The hanging thermotentacle worked on hot denaturation 

(collagen seems suitable protein). In the cold ocean it folded and extended. When extended it 

made contact with the warm site, unfolded and contracted again. 

<LEGEND> Figure 3 | Animal emergence in the Ediacaran  (overview). Microscopic 

protists emerged during the Varanger that oscillated in the thermal gradient above a submarine 

hydrothermal vent. The thermotether, thermopharynx and thermotentacle resulted in thermal 

cycling of First Proteins that sustained thermosynthesis in the temperature gradient. A larger 

span of the thermal gradient is beneficial for thermosynthesis: this yielded the evolutionary 

driving force for larger, macroscopic organisms, which in turn evolved into the sponge, polyp 

and anemone of the Ediacaran, after sunlight, photosynthesis and respiration had returned. 

Some of the emerged organisms consisted of symbionts: the polyp resembles a combination of 

a thermofrond and multiple thermopharynx-like sacs.  

<LEGEND> Figure 4 | Animal emergence in the Cambrian. Emergence of a Cambrian 

animal by symbiogenesis  of macroscopic progenitors that constituted its organs and that 

previously, during the early Cambrian or the Ediacaran, had lived on thermosynthesis; at the 

time of the emergence these progenitors lived however on respiration and used mitochondria. 

The numerous possible combinations for symbiogenesis yielded the large number of animal 

species that emerged during the Cambrian explosion. 

 

<TBLTTL> Table 1 | Correlation of extensive glaciations, thermosynthesis-based 

preadaptations and following emerged movement capabilities. 

<TBLROW>  

time of 

glaciation 

Geological 

period 

Thermosynthesis-based 

preadaptations 

Emerged organisms with novel movement 

capabilities 
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<TBLROW>  

2900 

Mya21 

Archean external thermotether Prokaryotes with 

bacterial flagellar motor 

 

<TBLROW>  

2900 

Mya21 

Archean external thermotether Prokaryotes with 

bacterial flagellar motor 

 

<TBLROW>  

720-

580 

Mya 

Late 

Proterozoic 

thermofrond, 

thermopharynx and 

thermotentacle 

Coelenterates with large body cavity 

and tentacles 

 

<TBLROW>  

543 

Mya 

Cambrian thermoprecipitate and 

use of thermal diffusion 

potential 

Large animals with large moving 

organs:  

‘The Cambrian explosion’ 
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