1,233,024 research outputs found
Length, Protein-Protein Interactions, and Complexity
The evolutionary reason for the increase in gene length from archaea to
prokaryotes to eukaryotes observed in large scale genome sequencing efforts has
been unclear. We propose here that the increasing complexity of protein-protein
interactions has driven the selection of longer proteins, as longer proteins
are more able to distinguish among a larger number of distinct interactions due
to their greater average surface area. Annotated protein sequences available
from the SWISS-PROT database were analyzed for thirteen eukaryotes, eight
bacteria, and two archaea species. The number of subcellular locations to which
each protein is associated is used as a measure of the number of interactions
to which a protein participates. Two databases of yeast protein-protein
interactions were used as another measure of the number of interactions to
which each \emph{S. cerevisiae} protein participates. Protein length is shown
to correlate with both number of subcellular locations to which a protein is
associated and number of interactions as measured by yeast two-hybrid
experiments. Protein length is also shown to correlate with the probability
that the protein is encoded by an essential gene. Interestingly, average
protein length and number of subcellular locations are not significantly
different between all human proteins and protein targets of known, marketed
drugs. Increased protein length appears to be a significant mechanism by which
the increasing complexity of protein-protein interaction networks is
accommodated within the natural evolution of species. Consideration of protein
length may be a valuable tool in drug design, one that predicts different
strategies for inhibiting interactions in aberrant and normal pathways.Comment: 13 pages, 5 figures, 2 tables, to appear in Physica
Hydrodynamic Interactions in Protein Folding
We incorporate hydrodynamic interactions (HI) in a coarse-grained and
structure-based model of proteins by employing the Rotne-Prager hydrodynamic
tensor. We study several small proteins and demonstrate that HI facilitate
folding. We also study HIV-1 protease and show that HI make the flap closing
dynamics faster. The HI are found to affect time correlation functions in the
vicinity of the native state even though they have no impact on same time
characteristics of the structure fluctuations around the native state
Hot-spot analysis for drug discovery targeting protein-protein interactions
Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions.
Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions.
Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft
Hydration dynamics at fluorinated protein surfaces
Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface
- …
