25,816 research outputs found

    Prognostics: Design, Implementation, and Challenges

    Get PDF
    Prognostics is an essential part of condition-based maintenance (CBM), described as predicting the remaining useful life (RUL) of a system. It is also a key technology for an integrated vehicle health management (IVHM) system that leads to improved safety and reliability. A vast amount of research has been presented in the literature to develop prognostics models that are able to predict a system’s RUL. These models can be broadly categorised into experience-based models, data-driven models and physics-based models. Therefore, careful consideration needs to be given to selecting which prognostics model to take forward and apply for each real application. Currently, developing reliable prognostics models in real life is challenging for various reasons, such as the design complexity associated with a system, the high uncertainty and its propagation in the degradation, system level prognostics, the evaluation framework and a lack of prognostics standards. This paper is written with the aim to bring forth the challenges and opportunities for developing prognostics models for complex systems and making researchers aware of these challenges and opportunities

    Major challenges in prognostics: study on benchmarking prognostic datasets

    Get PDF
    Even though prognostics has been defined to be one of the most difficult tasks in Condition Based Maintenance (CBM), many studies have reported promising results in recent years. The nature of the prognostics problem is different from diagnostics with its own challenges. There exist two major approaches to prognostics: data-driven and physics-based models. This paper aims to present the major challenges in both of these approaches by examining a number of published datasets for their suitability for analysis. Data-driven methods require sufficient samples that were run until failure whereas physics-based methods need physics of failure progression

    Enabling electronic prognostics using thermal data

    Get PDF
    Prognostics is a process of assessing the extent of deviation or degradation of a product from its expected normal operating condition, and then, based on continuous monitoring, predicting the future reliability of the product. By being able to determine when a product will fail, procedures can be developed to provide advanced warning of failures, optimize maintenance, reduce life cycle costs, and improve the design, qualification and logistical support of fielded and future systems. In the case of electronics, the reliability is often influenced by thermal loads, in the form of steady-state temperatures, power cycles, temperature gradients, ramp rates, and dwell times. If one can continuously monitor the thermal loads, in-situ, this data can be used in conjunction with precursor reasoning algorithms and stress-and-damage models to enable prognostics. This paper discusses approaches to enable electronic prognostics and provides a case study of prognostics using thermal data.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    A review of physics-based models in prognostics: application to gears and bearings of rotating machinery

    Get PDF
    Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing, health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health condition monitoring. The main contribution of this article is the identification of potential physics-based models for prognostics in rotating machinery

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Methods of Technical Prognostics Applicable to Embedded Systems

    Get PDF
    Hlavní cílem dizertace je poskytnutí uceleného pohledu na problematiku technické prognostiky, která nachází uplatnění v tzv. prediktivní údržbě založené na trvalém monitorování zařízení a odhadu úrovně degradace systému či jeho zbývající životnosti a to zejména v oblasti komplexních zařízení a strojů. V současnosti je technická diagnostika poměrně dobře zmapovaná a reálně nasazená na rozdíl od technické prognostiky, která je stále rozvíjejícím se oborem, který ovšem postrádá větší množství reálných aplikaci a navíc ne všechny metody jsou dostatečně přesné a aplikovatelné pro embedded systémy. Dizertační práce přináší přehled základních metod použitelných pro účely predikce zbývající užitné životnosti, jsou zde popsány metriky pomocí, kterých je možné jednotlivé přístupy porovnávat ať už z pohledu přesnosti, ale také i z pohledu výpočetní náročnosti. Jedno z dizertačních jader tvoří doporučení a postup pro výběr vhodné prognostické metody s ohledem na prognostická kritéria. Dalším dizertačním jádrem je představení tzv. částicového filtrovaní (particle filtering) vhodné pro model-based prognostiku s ověřením jejich implementace a porovnáním. Hlavní dizertační jádro reprezentuje případovou studii pro velmi aktuální téma prognostiky Li-Ion baterii s ohledem na trvalé monitorování. Případová studie demonstruje proces prognostiky založené na modelu a srovnává možné přístupy jednak pro odhad doby před vybitím baterie, ale také sleduje možné vlivy na degradaci baterie. Součástí práce je základní ověření modelu Li-Ion baterie a návrh prognostického procesu.The main aim of the thesis is to provide a comprehensive overview of technical prognosis, which is applied in the condition based maintenance, based on continuous device monitoring and remaining useful life estimation, especially in the field of complex equipment and machinery. Nowadays technical prognosis is still evolving discipline with limited number of real applications and is not so well developed as technical diagnostics, which is fairly well mapped and deployed in real systems. Thesis provides an overview of basic methods applicable for prediction of remaining useful life, metrics, which can help to compare the different approaches both in terms of accuracy and in terms of computational/deployment cost. One of the research cores consists of recommendations and guide for selecting the appropriate forecasting method with regard to the prognostic criteria. Second thesis research core provides description and applicability of particle filtering framework suitable for model-based forecasting. Verification of their implementation and comparison is provided. The main research topic of the thesis provides a case study for a very actual Li-Ion battery health monitoring and prognostics with respect to continuous monitoring. The case study demonstrates the prognostic process based on the model and compares the possible approaches for estimating both the runtime and capacity fade. Proposed methodology is verified on real measured data.

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process

    Methodology for the Diagnosis of Hydromechanical Actuation Loops in Aircraft Engines

    Get PDF
    This document provides a method for on-board monitoring and on-ground diagnosis of a hydromechanical actuation loop such as those found in aircraft engines. First, a complete system analysis is performed to understand its behaviour and determine the main degradation modes. Then, system health indicators are defined and a method for their real time on-board extraction is addressed. Diagnosis is performed on-ground through classification of degradation signatures. To parameterize on-ground treatment, both a reference healthy state of indicators and degradations signatures are needed. The healthy distribution of indicators is obtained from data and a physics-based model is used to simulate degradations, quantify indicators sensibility and construct the signatures database. At last, algorithms are deployed and a statistical validation of the performances is conducted
    corecore