280,153 research outputs found
The Royal Free Hospital score: a calibrated prognostic model for patients with cirrhosis admitted to intensive care unit. Comparison with current models and CLIF-SOFA score
Prognosis for patients with cirrhosis admitted to intensive care unit (ICU) is poor. ICU prognostic models are more accurate than liver-specific models. We identified predictors of mortality, developed a novel prognostic score (Royal Free Hospital (RFH) score), and tested it against established prognostic models and the yet unvalidated Chronic Liver Failure-Sequential Organ Failure Assessment (CLIF-SOFA) model
A Novel Predictor Tool of Biochemical Recurrence after Radical Prostatectomy Based on a Five-MicroRNA Tissue Signature
Within five to ten years after radical prostatectomy (RP), approximately 15-34% of prostate cancer (PCa) patients experience biochemical recurrence (BCR), which is defined as recurrence of serum levels of prostate-specific antigen >0.2 µg/L, indicating probable cancer recurrence. Models using clinicopathological variables for predicting this risk for patients lack accuracy. There is hope that new molecular biomarkers, like microRNAs (miRNAs), could be potential candidates to improve risk prediction. Therefore, we evaluated the BCR prognostic capability of 20 miRNAs, which were selected by a systematic literature review. MiRNA expressions were measured in formalin-fixed, paraffin-embedded (FFPE) tissue RP samples of 206 PCa patients by RT-qPCR. Univariate and multivariate Cox regression analyses were performed, to assess the independent prognostic potential of miRNAs. Internal validation was performed, using bootstrapping and the split-sample method. Five miRNAs (miR-30c-5p/31-5p/141-3p/148a-3p/miR-221-3p) were finally validated as independent prognostic biomarkers. Their prognostic ability and accuracy were evaluated using C-statistics of the obtained prognostic indices in the Cox regression, time-dependent receiver-operating characteristics, and decision curve analyses. Models of miRNAs, combined with relevant clinicopathological factors, were built. The five-miRNA-panel outperformed clinically established BCR scoring systems, while their combination significantly improved predictive power, based on clinicopathological factors alone. We conclude that this miRNA-based-predictor panel will be worth to be including in future studies
Survival prediction in mesothelioma using a scalable lasso regression model: instructions for use and initial performance using clinical predictors
Introduction: Accurate prognostication is difficult in malignant pleural mesothelioma (MPM). We developed a set of robust computational models to quantify the prognostic value of routinely available clinical data, which form the basis of published MPM prognostic models.
Methods: Data regarding 269 patients with MPM were allocated to balanced training (n=169) and validation sets (n=100). Prognostic signatures (minimal length best performing multivariate trained models) were generated by least absolute shrinkage and selection operator regression for overall survival (OS), OS <6 months and OS <12 months. OS prediction was quantified using Somers DXY statistic, which varies from 0 to 1, with increasing concordance between observed and predicted outcomes. 6-month survival and 12-month survival were described by area under the curve (AUC) scores.
Results: Median OS was 270 (IQR 140–450) days. The primary OS model assigned high weights to four predictors: age, performance status, white cell count and serum albumin, and after cross-validation performed significantly better than would be expected by chance (mean DXY0.332 (±0.019)). However, validation set DXY was only 0.221 (0.0935–0.346), equating to a 22% improvement in survival prediction than would be expected by chance. The 6-month and 12-month OS signatures included the same four predictors, in addition to epithelioid histology plus platelets and epithelioid histology plus C-reactive protein (mean AUC 0.758 (±0.022) and 0.737 (±0.012), respectively). The <6-month OS model demonstrated 74% sensitivity and 68% specificity. The <12-month OS model demonstrated 63% sensitivity and 79% specificity. Model content and performance were generally comparable with previous studies.
Conclusions: The prognostic value of the basic clinical information contained in these, and previously published models, is fundamentally of limited value in accurately predicting MPM prognosis. The methods described are suitable for expansion using emerging predictors, including tumour genomics and volumetric staging
A Similarity-Based Prognostics Approach for Remaining Useful Life Prediction
Physics-based and data-driven models are the two major prognostic approaches in the literature with their own advantages and disadvantages. This paper presents a similarity-based data-driven prognostic methodology and efficiency analysis study on remaining useful life estimation results. A similarity-based prognostic model is modified to employ the most similar training samples for RUL estimations on each time instance. The presented model is tested on; Virkler’s fatigue crack growth dataset, a drilling process degradation dataset, and a sliding chair degradation of a turnout system dataset. Prediction performances are compared utilizing an evaluation metric. Efficiency analysis of optimization results show that the modified similarity-based model performs better than the original definition
Implementation of a novel online condition monitoring thermal prognostic indicator system
This research aims to develop a reliable and robust online condition monitoring thermal prognostic indicator system which will reduce the risk of failures in a Power System Network. Real-time measurements (weather conditions, temperature of the cable joints or terminations, loading demand) taken close to underground cable will update the prognostic simulation model. Anomalies of the measurements along the cable will be compared with the predicted ones hence indicating a possible degradation activity in the cable. The use of such systems within a power networks will provide a smarter way of prognostic condition monitoring in which you measure less and model more. The use of suggested thermal models will enable the power network operators to maximize asset utilization and minimize constraint costs in the system
Impact of depth of response on survival in patients treated with cobimetinib ± vemurafenib: pooled analysis of BRIM-2, BRIM-3, BRIM-7 and coBRIM.
BackgroundThis pooled analysis investigated the prognostic value of depth of response in two cohorts of patients with BRAFV600-mutated metastatic melanoma treated with vemurafenib or cobimetinib plus vemurafenib.MethodsThe data were pooled from BRIM-2, BRIM-3, BRIM-7 and coBRIM. Association of depth of response with survival was estimated by Cox proportional hazards regression, adjusted for clinically relevant covariates. Depth of response was analysed in previously identified prognostic subgroups based on disease characteristics and gene signatures.ResultsGreater tumour reduction and longer time to maximal response were significantly associated with longer progression-free survival (PFS) and overall survival (OS) when evaluated as continuous variables. Patients with the deepest responses had long-lasting survival outcomes (median PFS: 14 months; OS: 32 months with vemurafenib; not estimable with cobimetinib plus vemurafenib). Cobimetinib plus vemurafenib improved depth of response versus vemurafenib monotherapy regardless of other prognostic factors, including gene signatures.ConclusionsGreater depth of response was associated with improved survival, supporting its utility as a measure of treatment efficacy in melanoma and further evaluation of its incorporation into existing prognostic models. Cobimetinib plus vemurafenib improved outcomes across quartiles of response regardless of prognostic factors or gene signatures and provided durable survival benefits in patients with deep responses
A distributed architecture to implement a prognostic function for complex systems
The proactivity in maintenance management is improved by the implementation of CBM (Condition-Based Maintenance) principles and of PHM (Prognostic and Health Management). These implementations use data about the health status of the systems. Among them, prognostic data make it possible to evaluate the future health of the systems. The Remaining Useful Lifetimes (RULs) of the components is frequently required to prognose systems. However, the availability of complex systems for productive tasks is often expressed in terms of RULs of functions and/or subsystems; those RULs have to bring information about the components. Indeed, the maintenance operators must know what components need maintenance actions in order to increase the RULs of the functions or subsystems, and consequently the availability of the complex systems for longer tasks or more productive tasks. This paper aims at defining a generic prognostic function of complex systems aiming at prognosing its functions and at enabling the isolation of components that needs maintenance actions. The proposed function requires knowledge about the system to be prognosed. The corresponding models are detailed. The proposed prognostic function contains graph traversal so its distribution is proposed to speed it up. It is carried out by generic agents
Circular RNAs in Clear Cell Renal Cell Carcinoma: Their Microarray-Based Identification, Analytical Validation, and Potential Use in a Clinico-Genomic Model to Improve Prognostic Accuracy
Circular RNAs (circRNAs) may act as novel cancer biomarkers. However, a genome-wide evaluation of circRNAs in clear cell renal cell carcinoma (ccRCC) has yet to be conducted. Therefore, the objective of this study was to identify and validate circRNAs in ccRCC tissue with a focus to evaluate their potential as prognostic biomarkers. A genome-wide identification of circRNAs in total RNA extracted from ccRCC tissue samples was performed using microarray analysis. Three relevant differentially expressed circRNAs were selected (circEGLN3, circNOX4, and circRHOBTB3), their circular nature was experimentally confirmed, and their expression-along with that of their linear counterparts-was measured in 99 malignant and 85 adjacent normal tissue samples using specifically established RT-qPCR assays. The capacity of circRNAs to discriminate between malignant and adjacent normal tissue samples and their prognostic potential (with the endpoints cancer-specific, recurrence-free, and overall survival) after surgery were estimated by C-statistics, Kaplan-Meier method, univariate and multivariate Cox regression analysis, decision curve analysis, and Akaike and Bayesian information criteria. CircEGLN3 discriminated malignant from normal tissue with 97% accuracy. We generated a prognostic for the three endpoints by multivariate Cox regression analysis that included circEGLN3, circRHOBT3 and linRHOBTB3. The predictive outcome accuracy of the clinical models based on clinicopathological factors was improved in combination with this circRNA-based signature. Bootstrapping as well as Akaike and Bayesian information criteria confirmed the statistical significance and robustness of the combined models. Limitations of this study include its retrospective nature and the lack of external validation. The study demonstrated the promising potential of circRNAs as diagnostic and particularly prognostic biomarkers in ccRCC patients
- …
