2,943,184 research outputs found
Clustering-Based Predictive Process Monitoring
Business process enactment is generally supported by information systems that
record data about process executions, which can be extracted as event logs.
Predictive process monitoring is concerned with exploiting such event logs to
predict how running (uncompleted) cases will unfold up to their completion. In
this paper, we propose a predictive process monitoring framework for estimating
the probability that a given predicate will be fulfilled upon completion of a
running case. The predicate can be, for example, a temporal logic constraint or
a time constraint, or any predicate that can be evaluated over a completed
trace. The framework takes into account both the sequence of events observed in
the current trace, as well as data attributes associated to these events. The
prediction problem is approached in two phases. First, prefixes of previous
traces are clustered according to control flow information. Secondly, a
classifier is built for each cluster using event data to discriminate between
fulfillments and violations. At runtime, a prediction is made on a running case
by mapping it to a cluster and applying the corresponding classifier. The
framework has been implemented in the ProM toolset and validated on a log
pertaining to the treatment of cancer patients in a large hospital
Alarm-Based Prescriptive Process Monitoring
Predictive process monitoring is concerned with the analysis of events
produced during the execution of a process in order to predict the future state
of ongoing cases thereof. Existing techniques in this field are able to
predict, at each step of a case, the likelihood that the case will end up in an
undesired outcome. These techniques, however, do not take into account what
process workers may do with the generated predictions in order to decrease the
likelihood of undesired outcomes. This paper proposes a framework for
prescriptive process monitoring, which extends predictive process monitoring
approaches with the concepts of alarms, interventions, compensations, and
mitigation effects. The framework incorporates a parameterized cost model to
assess the cost-benefit tradeoffs of applying prescriptive process monitoring
in a given setting. The paper also outlines an approach to optimize the
generation of alarms given a dataset and a set of cost model parameters. The
proposed approach is empirically evaluated using a range of real-life event
logs
Specification-Driven Predictive Business Process Monitoring
Predictive analysis in business process monitoring aims at forecasting the
future information of a running business process. The prediction is typically
made based on the model extracted from historical process execution logs (event
logs). In practice, different business domains might require different kinds of
predictions. Hence, it is important to have a means for properly specifying the
desired prediction tasks, and a mechanism to deal with these various prediction
tasks. Although there have been many studies in this area, they mostly focus on
a specific prediction task. This work introduces a language for specifying the
desired prediction tasks, and this language allows us to express various kinds
of prediction tasks. This work also presents a mechanism for automatically
creating the corresponding prediction model based on the given specification.
Differently from previous studies, instead of focusing on a particular
prediction task, we present an approach to deal with various prediction tasks
based on the given specification of the desired prediction tasks. We also
provide an implementation of the approach which is used to conduct experiments
using real-life event logs.Comment: This article significantly extends the previous work in
https://doi.org/10.1007/978-3-319-91704-7_7 which has a technical report in
arXiv:1804.00617. This article and the previous work have a coauthor in
commo
Statistical process monitoring of a multiphase flow facility
Industrial needs are evolving fast towards more flexible manufacture schemes. As a consequence, it is often required to adapt the plant production to the demand, which can be volatile depending on the application. This is why it is important to develop tools that can monitor the condition of the process working under varying operational conditions. Canonical Variate Analysis (CVA) is a multivariate data driven methodology which has been demonstrated to be superior to other methods, particularly under dynamically changing operational conditions. These comparative studies normally use computer simulated data in benchmark case studies such as the Tennessee Eastman Process Plant (Ricker, N.L. Tennessee Eastman Challenge Archive, Available at 〈http://depts.washington.edu/control/LARRY/TE/download.html〉 Accessed 21.03.2014).
The aim of this work is to provide a benchmark case to demonstrate the ability of different monitoring techniques to detect and diagnose artificially seeded faults in an industrial scale multiphase flow experimental rig. The changing operational conditions, the size and complexity of the test rig make this case study an ideal candidate for a benchmark case that provides a test bed for the evaluation of novel multivariate process monitoring techniques performance using real experimental data. In this paper, the capabilities of CVA to detect and diagnose faults in a real system working under changing operating conditions are assessed and compared with other methodologies. The results obtained demonstrate that CVA can be effectively applied for the detection and diagnosis of faults in real complex systems, and reinforce the idea that the performance of CVA is superior to other algorithms
Design optimization of ANN-based pattern recognizer for multivariate quality control
In manufacturing industries, process variation is known to be major source of poor
quality. As such, process monitoring and diagnosis is critical towards continuous quality
improvement. This becomes more challenging when involving two or more correlated
variables or known as multivariate. Process monitoring refers to the identification of process
status either it is running within a statistically in-control or out-of-control condition, while
process diagnosis refers to the identification of the source variables of out-of-control process.
The traditional statistical process control (SPC) charting scheme are known to be effective in
monitoring aspects, but they are lack of diagnosis. In recent years, the artificial neural
network (ANN) based pattern recognition schemes has been developed for solving this issue.
The existing ANN model recognizers are mainly utilize raw data as input representation,
which resulted in limited performance. In order to improve the monitoring-diagnosis
capability, in this research, the feature based input representation shall be investigated using
empirical method in designing the ANN model recognizer
Process monitoring and visualization solutions for hot-melt extrusion : a review
Objectives: Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion.
Key Findings: Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product.
Summary: This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME
Process operating mode monitoring : switching online the right controller
This paper presents a structure which deals with
process operating mode monitoring and allows the control law reconfiguration
by switching online the right controller. After a short
review of the advances in switching based control systems during
the last decade, we introduce our approach based on the definition
of operating modes of a plant. The control reconfiguration
strategy is achieved by online selection of an adequate controller,
in a case of active accommodation. The main contribution lies
in settling up the design steps of the multicontroller structure
and its accurate integration in the operating mode detection and
accommodation loop. Simulation results show the effectiveness
of the operating mode detection and accommodation (OMDA)
structure for which the design steps propose a method to study the
asymptotic stability, switching performances improvement, and
the tuning of the multimodel based detector
A log mining approach for process monitoring in SCADA
SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and performs actions, which look legitimate, but which are intended to disrupt the SCADA process. To detect such threats, we propose a semi-automated approach of log processing. We conduct experiments on a real-life water treatment facility. A preliminary case study suggests that our approach is effective in detecting anomalous events that might alter the regular process workflow
- …
