362,392 research outputs found

    An Algorithm for Probabilistic Alternating Simulation

    Get PDF
    In probabilistic game structures, probabilistic alternating simulation (PA-simulation) relations preserve formulas defined in probabilistic alternating-time temporal logic with respect to the behaviour of a subset of players. We propose a partition based algorithm for computing the largest PA-simulation, which is to our knowledge the first such algorithm that works in polynomial time, by extending the generalised coarsest partition problem (GCPP) in a game-based setting with mixed strategies. The algorithm has higher complexities than those in the literature for non-probabilistic simulation and probabilistic simulation without mixed actions, but slightly improves the existing result for computing probabilistic simulation with respect to mixed actions.Comment: We've fixed a problem in the SOFSEM'12 conference versio

    Computing Distances between Probabilistic Automata

    Full text link
    We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bi)simulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bi)simulation, which we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Deterministic networks for probabilistic computing

    Get PDF
    Neural-network models of high-level brain functions such as memory recall and reasoning often rely on the presence of stochasticity. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. However, both in vivo and in silico, the number of noise sources is limited due to space and bandwidth constraints. Hence, neurons in large networks usually need to share noise sources. Here, we show that the resulting shared-noise correlations can significantly impair the performance of stochastic network models. We demonstrate that this problem can be overcome by using deterministic recurrent neural networks as sources of uncorrelated noise, exploiting the decorrelating effect of inhibitory feedback. Consequently, even a single recurrent network of a few hundred neurons can serve as a natural noise source for large ensembles of functional networks, each comprising thousands of units. We successfully apply the proposed framework to a diverse set of binary-unit networks with different dimensionalities and entropies, as well as to a network reproducing handwritten digits with distinct predefined frequencies. Finally, we show that the same design transfers to functional networks of spiking neurons.Comment: 22 pages, 11 figure

    Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

    Get PDF
    The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch's probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon's simple policy iteration on these games. The correctness of Condon's approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UPcoUP\textbf{UP} \cap \textbf{coUP} and \textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to M\'emoli. As an additional contribution, in this paper we show that M\'emoli's result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary ω\omega-regular properties, expressed, eg., as LTL formulas

    Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference

    Full text link
    Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference

    A Probabilistic Perspective on Gaussian Filtering and Smoothing

    No full text
    We present a general probabilistic perspective on Gaussian filtering and smoothing. This allows us to show that common approaches to Gaussian filtering/smoothing can be distinguished solely by their methods of computing/approximating the means and covariances of joint probabilities. This implies that novel filters and smoothers can be derived straightforwardly by providing methods for computing these moments. Based on this insight, we derive the cubature Kalman smoother and propose a novel robust filtering and smoothing algorithm based on Gibbs sampling
    corecore