362,392 research outputs found
An Algorithm for Probabilistic Alternating Simulation
In probabilistic game structures, probabilistic alternating simulation
(PA-simulation) relations preserve formulas defined in probabilistic
alternating-time temporal logic with respect to the behaviour of a subset of
players. We propose a partition based algorithm for computing the largest
PA-simulation, which is to our knowledge the first such algorithm that works in
polynomial time, by extending the generalised coarsest partition problem (GCPP)
in a game-based setting with mixed strategies. The algorithm has higher
complexities than those in the literature for non-probabilistic simulation and
probabilistic simulation without mixed actions, but slightly improves the
existing result for computing probabilistic simulation with respect to mixed
actions.Comment: We've fixed a problem in the SOFSEM'12 conference versio
Computing Distances between Probabilistic Automata
We present relaxed notions of simulation and bisimulation on Probabilistic
Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve
the usual notions of bisimulation and simulation on PAs. We give logical
characterisations of these notions by choosing suitable logics which differ
from the elementary ones, L with negation and L without negation, by the modal
operator. Using flow networks, we show how to compute the relations in PTIME.
This allows the definition of an efficiently computable non-discounted distance
between the states of a PA. A natural modification of this distance is
introduced, to obtain a discounted distance, which weakens the influence of
long term transitions. We compare our notions of distance to others previously
defined and illustrate our approach on various examples. We also show that our
distance is not expansive with respect to process algebra operators. Although L
without negation is a suitable logic to characterise epsilon-(bi)simulation on
deterministic PAs, it is not for general PAs; interestingly, we prove that it
does characterise weaker notions, called a priori epsilon-(bi)simulation, which
we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Deterministic networks for probabilistic computing
Neural-network models of high-level brain functions such as memory recall and
reasoning often rely on the presence of stochasticity. The majority of these
models assumes that each neuron in the functional network is equipped with its
own private source of randomness, often in the form of uncorrelated external
noise. However, both in vivo and in silico, the number of noise sources is
limited due to space and bandwidth constraints. Hence, neurons in large
networks usually need to share noise sources. Here, we show that the resulting
shared-noise correlations can significantly impair the performance of
stochastic network models. We demonstrate that this problem can be overcome by
using deterministic recurrent neural networks as sources of uncorrelated noise,
exploiting the decorrelating effect of inhibitory feedback. Consequently, even
a single recurrent network of a few hundred neurons can serve as a natural
noise source for large ensembles of functional networks, each comprising
thousands of units. We successfully apply the proposed framework to a diverse
set of binary-unit networks with different dimensionalities and entropies, as
well as to a network reproducing handwritten digits with distinct predefined
frequencies. Finally, we show that the same design transfers to functional
networks of spiking neurons.Comment: 22 pages, 11 figure
Computing Probabilistic Bisimilarity Distances for Probabilistic Automata
The probabilistic bisimilarity distance of Deng et al. has been proposed as a
robust quantitative generalization of Segala and Lynch's probabilistic
bisimilarity for probabilistic automata. In this paper, we present a
characterization of the bisimilarity distance as the solution of a simple
stochastic game. The characterization gives us an algorithm to compute the
distances by applying Condon's simple policy iteration on these games. The
correctness of Condon's approach, however, relies on the assumption that the
games are stopping. Our games may be non-stopping in general, yet we are able
to prove termination for this extended class of games. Already other algorithms
have been proposed in the literature to compute these distances, with
complexity in and \textbf{PPAD}. Despite the
theoretical relevance, these algorithms are inefficient in practice. To the
best of our knowledge, our algorithm is the first practical solution.
The characterization of the probabilistic bisimilarity distance mentioned
above crucially uses a dual presentation of the Hausdorff distance due to
M\'emoli. As an additional contribution, in this paper we show that M\'emoli's
result can be used also to prove that the bisimilarity distance bounds the
difference in the maximal (or minimal) probability of two states to satisfying
arbitrary -regular properties, expressed, eg., as LTL formulas
Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference
Probabilistic inference from real-time input data is becoming increasingly
popular and may be one of the potential pathways at enabling cognitive
intelligence. As a matter of fact, preliminary research has revealed that
stochastic functionalities also underlie the spiking behavior of neurons in
cortical microcircuits of the human brain. In tune with such observations,
neuromorphic and other unconventional computing platforms have recently started
adopting the usage of computational units that generate outputs
probabilistically, depending on the magnitude of the input stimulus. In this
work, we experimentally demonstrate a spintronic device that offers a direct
mapping to the functionality of such a controllable stochastic switching
element. We show that the probabilistic switching of Ta/CoFeB/MgO
heterostructures in presence of spin-orbit torque and thermal noise can be
harnessed to enable probabilistic inference in a plethora of unconventional
computing scenarios. This work can potentially pave the way for hardware that
directly mimics the computational units of Bayesian inference
A Probabilistic Perspective on Gaussian Filtering and Smoothing
We present a general probabilistic perspective on Gaussian filtering and smoothing. This allows us to show that common approaches to Gaussian filtering/smoothing can be distinguished solely by their methods of computing/approximating the means and covariances of joint probabilities. This implies that novel filters and smoothers can be derived straightforwardly by providing methods for computing these moments. Based on this insight, we derive the cubature Kalman smoother and propose a novel robust filtering and smoothing algorithm based on Gibbs sampling
- …
