1,672,906 research outputs found
Decomposable Principal Component Analysis
We consider principal component analysis (PCA) in decomposable Gaussian
graphical models. We exploit the prior information in these models in order to
distribute its computation. For this purpose, we reformulate the problem in the
sparse inverse covariance (concentration) domain and solve the global
eigenvalue problem using a sequence of local eigenvalue problems in each of the
cliques of the decomposable graph. We demonstrate the application of our
methodology in the context of decentralized anomaly detection in the Abilene
backbone network. Based on the topology of the network, we propose an
approximate statistical graphical model and distribute the computation of PCA
N-Dimensional Principal Component Analysis
In this paper, we first briefly introduce the multidimensional Principal Component Analysis (PCA) techniques, and then amend our previous N-dimensional PCA (ND-PCA) scheme by introducing multidirectional decomposition into ND-PCA implementation. For the case of high dimensionality, PCA technique is usually extended to an arbitrary n-dimensional space by the Higher-Order Singular Value Decomposition (HO-SVD) technique. Due to the size of tensor, HO-SVD implementation usually leads to a huge matrix along some direction of tensor, which is always beyond the capacity of an ordinary PC. The novelty of this paper is to amend our previous ND-PCA scheme to deal with this challenge and further prove that the revised ND-PCA scheme can provide a near optimal linear solution under the given error bound. To evaluate the numerical property of the revised ND-PCA scheme, experiments are performed on a set of 3D volume datasets
Simplicial Nonlinear Principal Component Analysis
We present a new manifold learning algorithm that takes a set of data points
lying on or near a lower dimensional manifold as input, possibly with noise,
and outputs a simplicial complex that fits the data and the manifold. We have
implemented the algorithm in the case where the input data can be triangulated.
We provide triangulations of data sets that fall on the surface of a torus,
sphere, swiss roll, and creased sheet embedded in a fifty dimensional space. We
also discuss the theoretical justification of our algorithm.Comment: 21 pages, 6 figure
- …
