3,014 research outputs found
Four primality testing algorithms
In this expository paper we describe four primality tests. The first test is
very efficient, but is only capable of proving that a given number is either
composite or 'very probably' prime. The second test is a deterministic
polynomial time algorithm to prove that a given numer is either prime or
composite. The third and fourth primality tests are at present most widely used
in practice. Both tests are capable of proving that a given number is prime or
composite, but neither algorithm is deterministic. The third algorithm exploits
the arithmetic of cyclotomic fields. Its running time is almost, but not quite
polynomial time. The fourth algorithm exploits elliptic curves. Its running
time is difficult to estimate, but it behaves well in practice.Comment: 21 page
Recommended from our members
Primality-testing Mersenne Numbers (II)
Reports the factor-filtering and primality-testing of Mersenne Numbers Mp for p < 100000, the latter using the ICL 'DAP' Distributed Array Processor
- …
