*86T-11-857 G M ${ }^{\text {c }}$ C HAWORTH: 33, Alexandra Rd., Reading, Berks UK, RG1 5PG.
Primality-testing Mersenne Numbers (II). Preliminary Report.
$M_{p}=2^{p}-1$, index p prime, is a Mersenne Number. Let $S_{1}=4$ and let $S_{n+1}=S_{n}{ }^{2}-2$ mod M_{p}. The M_{p} LucasLehmer primality test $\left(M_{p}-L L T\right)$ is $" M_{p}$ prime \Leftrightarrow residue $S_{p-1}=0$ for $p>2$.

Codes A and B exercised M_{p}-LLT [AMS Abstracts, v4 no2 (Feb '83) p196, 83T-10-82] over the $p<62982$ range, including all M_{p} for which no factor was known. By November '84, Code C had extended the coverage, testing the $1362 \mathrm{M}_{\mathrm{p}}$ for which no factor was known in the range $62982<p<100000$. The three codes run on the ICL DAP at QMC London and use Fast Fermat-number-transform multiplication.

Code C tested $16 M_{p}$ in parallel and checked the squaring modulo $2^{16}-1$ without signalling any faults. It confirmed M_{86243} prime in effectively 2318 seconds and also confirmed 520 other known M_{p}-LRs.

The consolidated and filed results comprise:
a) $M_{50021}-f_{1}, M_{50023}-f_{1}$ and $2620 M_{p}-f_{1}$ for $50024<p<100000$
b) the previous 2828 second-sourced M_{p}-LRs for $p<50024$
c) 1837 single-sourced M_{p}-LRs for $50024<p<100000$
d) references to $M_{p}-f_{1}$ tables for $p<50000$ and to known $M_{p}-L R$ sources.

The author gratefully acknowledges the computing provided by the National DAP Service at Queen Mary College and the assistance of Grant Bowgen and Steve Davies who produced the final computations.
(Received November 8, 1985) (Sponsored by Samuel S. Wagstaff, Jr.)

