23 research outputs found

    The asymptotic number of prefix normal words

    Get PDF
    We show that the number of prefix normal binary words of length nn is 2nΘ((logn)2)2^{n-\Theta((\log n)^2)}. We also show that the maximum number of binary words of length nn with a given fixed prefix normal form is 2nO(nlogn)2^{n-O(\sqrt{n\log n})}.Comment: 9 page

    Binary Jumbled String Matching for Highly Run-Length Compressible Texts

    Full text link
    The Binary Jumbled String Matching problem is defined as: Given a string ss over {a,b}\{a,b\} of length nn and a query (x,y)(x,y), with x,yx,y non-negative integers, decide whether ss has a substring tt with exactly xx aa's and yy bb's. Previous solutions created an index of size O(n) in a pre-processing step, which was then used to answer queries in constant time. The fastest algorithms for construction of this index have running time O(n2/logn)O(n^2/\log n) [Burcsi et al., FUN 2010; Moosa and Rahman, IPL 2010], or O(n2/log2n)O(n^2/\log^2 n) in the word-RAM model [Moosa and Rahman, JDA 2012]. We propose an index constructed directly from the run-length encoding of ss. The construction time of our index is O(n+ρ2logρ)O(n+\rho^2\log \rho), where O(n) is the time for computing the run-length encoding of ss and ρ\rho is the length of this encoding---this is no worse than previous solutions if ρ=O(n/logn)\rho = O(n/\log n) and better if ρ=o(n/logn)\rho = o(n/\log n). Our index LL can be queried in O(logρ)O(\log \rho) time. While L=O(min(n,ρ2))|L|= O(\min(n, \rho^{2})) in the worst case, preliminary investigations have indicated that L|L| may often be close to ρ\rho. Furthermore, the algorithm for constructing the index is conceptually simple and easy to implement. In an attempt to shed light on the structure and size of our index, we characterize it in terms of the prefix normal forms of ss introduced in [Fici and Lipt\'ak, DLT 2011].Comment: v2: only small cosmetic changes; v3: new title, weakened conjectures on size of Corner Index (we no longer conjecture it to be always linear in size of RLE); removed experimental part on random strings (these are valid but limited in their predictive power w.r.t. general strings); v3 published in IP

    On Infinite Prefix Normal Words

    Full text link
    Prefix normal words are binary words that have no factor with more 11s than the prefix of the same length. Finite prefix normal words were introduced in [Fici and Lipt\'ak, DLT 2011]. In this paper, we study infinite prefix normal words and explore their relationship to some known classes of infinite binary words. In particular, we establish a connection between prefix normal words and Sturmian words, between prefix normal words and abelian complexity, and between prefix normality and lexicographic order.Comment: 20 pages, 4 figures, accepted at SOFSEM 2019 (45th International Conference on Current Trends in Theory and Practice of Computer Science, Nov\'y Smokovec, Slovakia, January 27-30, 2019

    Bubble-Flip---A New Generation Algorithm for Prefix Normal Words

    Full text link
    We present a new recursive generation algorithm for prefix normal words. These are binary strings with the property that no substring has more 1s than the prefix of the same length. The new algorithm uses two operations on binary strings, which exploit certain properties of prefix normal words in a smart way. We introduce infinite prefix normal words and show that one of the operations used by the algorithm, if applied repeatedly to extend the string, produces an ultimately periodic infinite word, which is prefix normal. Moreover, based on the original finite word, we can predict both the length and the density of an ultimate period of this infinite word.Comment: 30 pages, 3 figures, accepted in Theoret. Comp. Sc.. This is the journal version of the paper with the same title at LATA 2018 (12th International Conference on Language and Automata Theory and Applications, Tel Aviv, April 9-11, 2018
    corecore