33 research outputs found

    Overcoming naphthoquinone deactivation:rhodium-catalyzed C-5 selective C-H iodination as a gateway to functionalized derivatives

    Get PDF
    Rh-catalyzed C-5 selective C–H iodination of naphthoquinones provides a gateway to previously inaccessible A-ring analogues. C-2 selective processes can be achieved under related conditions.</p

    Quinone-Based Fluorophores for Imaging Biological Processes

    Get PDF
    Quinones are privileged chemical structures playing crucial roles as redox and alkylating agents in a wide range of processes in cells. The broad functional array of quinones has prompted the development of new chemical approaches, including C-H bond activation and asymmetric reactions, to generate probes for examining their activity by means of fluorescence imaging. This tutorial review covers recent advances in the design, synthesis and applications of quinone-based fluorescent agents for visualizing specific processes in multiple biological systems, from cells to tissues and complex in vivo organisms

    Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish

    Get PDF
    During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related β-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds

    Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB

    Get PDF
    [EN] Leishmania is the aethiological agent responsible for the visceral leishmaniasis, a serious parasite-borne disease widely spread all over the World. The emergence of resistant strains makes classical treatments less effective; therefore, new and better drugs are necessary. Naphthoquinones are interesting compounds for which many pharmacological properties have been described, including leishmanicidal activity. This work shows the antileishmanial effect of two series of terpenyl-1,4-naphthoquinones (NQ) and 1,4-anthraquinones (AQ) obtained from natural terpenoids, such as myrcene and myrceocommunic acid. They were evaluated both in vitro and ex vivo against the transgenic iRFP-Leishmania infantum strain and also tested on liver HepG2 cells to determine their selectivity indexes. The results indicated that NQ derivatives showed better antileishmanial activity than AQ analogues, and among them, compounds with a diacetylated hydroquinone moiety provided better results than their corresponding quinones. Regarding the terpenic precursor, compounds obtained from the monoterpenoid myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the diterpenoid showed better antileishmanial activity without selectivity. In order to explore their mechanism of action, all the compounds have been tested as potential inhibitors of Leishmania type IB DNA topoisomerases, but only some compounds that displayed the quinone ring were able to inhibit the recombinant enzyme in vitro. This fact together with the docking studies performed on LTopIB suggested the existence of another mechanism of action, alternative or complementary to LTopIB inhibition. In silico druglikeness and ADME evaluation of the best leishmanicidal compounds has shown good predictable druggabilitySIFinancial support came from Spanish MINECO (CTQ2015-68175-R, AGL2016-79813-C2-1-R, AGL2016-79813-C2-2-R and SAF2017-83575-R), ISCIII-RICET Network (RD12/0018/0002) and Consejería de Educación de la Junta de Castilla y León (LE020P17) co-financed by the Fondo Social Europeo of the European Union (FEDER-EU). P. G. J. acknowledges funding by Fundación Salamanca Ciudad de Cultura y Saberes (’‘Programme for attracting scientific talent to Salamanca’‘

    Hybrid sol-gel matrices doped with colorimetric/fluorimetric imidazole derivatives

    Get PDF
    Organic–inorganic hybrids (OIH) are materials that can be easily synthesized by the sol–gel method and combine the advantages of organic and inorganic moieties within a single polymeric matrix. Imidazole derivatives are versatile organic compounds that can change their optical properties with the variation of pH due to the protonation or deprotonation of the nitrogen atoms. This work reports the preparation of different OIHs doped with different contents of two imidazole compounds (3a,b). The obtained materials were characterized structurally by FTIR, and the dielectric properties were studied by electrochemical impedance spectroscopy. The optical properties were studied by UV-Vis absorption and fluorescence spectroscopies. The FTIR analysis showed that the presence of the imidazole does not change the structural properties of the matrices. The normalized resistance values obtained for the doped matrices ranged between 8.57 and 9.32 Ω cm2, all being higher than the undoped matrix. The σ ranged between 9.49 and 10.28 S cm−1, being all higher than the pure OIH samples. Compound 3a showed a maximum absorption peak at 390 nm, which is present in the OIH spectra, proving the presence of the compound. In the case of compound 3b, a maximum absorption wavelength at 412 nm was found, and the compound peak was not clear, which may indicate that an interaction between the compound and the matrix occurred. A synergetic effect between the intrinsic emission of the matrix and the fluorescence of 3a is found on the OIH-doped matrices.This research was funded by Fundação para a Ciência e Tecnologia (FCT) and FEDER (European Fund for Regional Development)-COMPETE-QRENEU through the Chemistry Research Centre of the University of Minho (Ref. CQ/UM (UID/QUI/00686/2019 and UID/QUI/00686/2020), project “SolSensors—Development of Advanced Fiber Optic Sensors for Monitoring the Durability of Concrete Structures”, reference POCI-01-0145-FEDER-031220, and a PhD grant to R.P.C.L. Sousa (SFRH/BD/145639/2019). The NMR spectrometer Bruker Avance III 400 is part of the National NMR Network (PTNMR) and partially supported by Infrastructure Project No 022161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC)

    Landomycins as glutathione-depleting agents and natural fluorescent probes for cellular Michael adduct-dependent quinone metabolism

    Get PDF
    Landomycins are angucyclines with promising antineoplastic activity produced by Streptomyces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide chain differs within derivatives. Herein, we report that landomycins spontaneously form Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While landomycins generally do not display emissive properties, the respective Michael adducts exerted intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the fluorescent mono-adduct. While extracellular adduct formation completely blocked the cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glutathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting agents like menadione but exerted reduced activity under hypoxia. Summarizing, landomycins represent natural glutathione-depleting agents and fluorescence probes for intracellular anthraquinone-based angucycline metabolism

    Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones

    Get PDF
    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC50/24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy

    Manipulation of the inflammatory response in vivo using synthetic tanshinone analogues

    Get PDF

    organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment

    Get PDF
    Abstract Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects
    corecore