80,071 research outputs found
Dutch guideline for clinical foetal-neonatal and paediatric post-mortem radiology, including a review of literature
Clinical post-mortem radiology is a relatively new field of expertise and not common practice in most hospitals yet. With the declining numbers of autopsies and increasing demand for quality control of clinical care, post-mortem radiology can offer a solution, or at least be complementary. A working group consisting of radiologists, pathologists and other clinical medical specialists reviewed and evaluated the literature on the diagnostic value of post-mortem conventional radiography (CR), ultrasonography, computed tomography (PMCT), magnetic resonance imaging (PMMRI), and minimally invasive autopsy (MIA). Evidence tables were built and subsequently a Dutch national evidence-based guideline for post-mortem radiology was developed. We present this evaluation of the radiological modalities in a clinical post-mortem setting, including MIA, as well as the recently published Dutch guidelines for post-mortem radiology in foetuses, neonates, and children. In general, for post-mortem radiology modalities, PMMRI is the modality of choice in foetuses, neonates, and infants, whereas PMCT is advised in older children. There is a limited role for post-mortem CR and ultrasonography. In most cases, conventional autopsy will remain the diagnostic method of choice.Conclusion: Based on a literature review and clinical expertise, an evidence-based guideline was developed for post-mortem radiology of foetal, neonatal, and paediatric patients.</p
Dutch guideline for clinical foetal-neonatal and paediatric post-mortem radiology, including a review of literature
Clinical post-mortem radiology is a relatively new field of expertise and not common practice in most hospitals yet. With the declining numbers of autopsies and increasing demand for quality control of clinical care, post-mortem radiology can offer a solution, or at least be complementary. A working group consisting of radiologists, pathologists and other clinical medical specialists reviewed and evaluated the literature on the diagnostic value of post-mortem conventional radiography (CR), ultrasonography, computed tomography (PMCT), magnetic resonance imaging (PMMRI), and minimally invasive autopsy (MIA). Evidence tables were built and subsequently a Dutch national evidence-based guideline for post-mortem radiology was developed. We present this evaluation of the radiological modalities in a clinical post-mortem setting, including MIA, as well as the recently published Dutch guidelines for post-mortem radiology in foetuses, neonates, and children. In general, for post-mortem radiology modalities, PMMRI is the modality of choice in foetuses, neonates, and infants, whereas PMCT is advised in older children. There is a limited role for post-mortem CR and ultrasonography. In most cases, conventional autopsy will remain the diagnostic method of choice.Conclusion: Based on a literature review and clinical expertise, an evidence-based guideline was developed for post-mortem radiology of foetal, neonatal, and paediatric patients.</p
Leveraging sequential plasma samples and post-mortem tissue samples to characterise the mechanisms of resistance in metastatic prostate cancer
Despite the approval of several treatments conferring an overall survival benefit in metastatic prostate cancer patients, the mechanisms of resistance to these drugs are not well understood and unfortunately it remains a lethal disease. I hypothesised that analysing metastatic prostate cancer patients through collection of multiple longitudinal blood samples coupled to characterisation of post-mortem samples would identify such resistance mechanisms. To that end, I developed and analysed in an N=1 manner a cohort of 10 metastatic prostate cancer patients by first, establishing a platform for intensive blood sampling and archival tissue and clinical data collection and second, by
collecting multi-region post-mortem samples in an established prostate cohort under the PEACE post-mortem study. I generated high coverage targeted capture data for a total number of 308 samples (13 archival, 97 plasma and 198
post-mortem) using a prostate-specific assay and performed genomic analysis using a tool optimized for accurate calling of allele specific copy number (CN) alterations. The data generated showed that CN assessment at an allele-specific
level, helps understanding the variable responses to PARP inhibitors of DNA Damage Repair (DDR) aberrant patients. Further data in this thesis, showed that lethal metastases clustered into two/three distinct groups based on their
autosomal CN alterations. Furthermore, the clonal evolution could be tracked longitudinally using circulating tumour DNA (ctDNA) over sequential treatment lines which preceded radiological progression, and I identified treatment-related
genomic aberrations that emerged or regressed over time. However, despite the regression of clones in plasma, these could still be identified in post-mortem samples. Also, although ctDNA represented the bulk of the metastatic disease, subclonal aberrations private to a few metastatic sites could be missed in plasma. Analysis of archival diagnostic samples confirmed putatively truncal events
identified at post-mortem and plasma. I identified a positive correlation between circulating cell-free DNA (ccfDNA) and ctDNA for patients receiving androgen
receptor signalling inhibitors (ARSI) in contrast to taxane chemotherapies. Finally, I observed that patients with extensive lymph node disease in the absence of liver metastases shed significantly lower fractions of ctDNA in blood.
In conclusion, the results of this thesis confirm that genomic analysis of multiple plasma and post-mortem samples allowed for spatial and longitudinal clone
characterization allowing for a deeper understanding of mechanisms of resistance in lethal prostate cancer patients
Post-mortem correlates of Virchow-Robin spaces detected on in vivo MRI
The purpose of our study is to quantify the extent to which Virchow-Robin spaces (VRS) detected on in vivo MRI are reproducible by post-mortem MRI.Double Echo Steady State 3T MRIs were acquired post-mortem in 49 double- and 32 single-hemispheric formalin-fixed brain sections from 12 patients, who underwent conventional diagnostic 1.5 or 3T MRI in median 22 days prior to death (25% to 75%: 12 to 134 days). The overlap of in vivo and post-mortem VRS segmentations was determined accounting for potential confounding factors.The reproducibility of VRS found on in vivo MRI by post-mortem MRI, in the supratentorial white matter was in median 80% (25% to 75%: 60 to 100). A lower reproducibility was present in the basal ganglia, with a median of 47% (25% to 75%: 30 to 50).VRS segmentations were histologically confirmed in one double hemispheric section.Overall, the majority of VRS found on in vivo MRI was stable throughout death and formalin fixation, emphasizing the translational potential of post-mortem VRS studies
Decoding damage-associated microglia in post mortem hippocampus of Alzheimer’s disease patients
The relationship between Alzheimer’s disease (AD) and neuroinflammation has become stronger since the
identification of several genetic risk factors related to microglial function. Though the role of microglial cells in the development/progression of AD is still unknown, a dysfunctional response has recently gained support. In this sense, we have reported an attenuated microglial activation associated to amyloid plaques in the hippocampus of AD patients, including a prominent degenerative process of the microglial population in the dentate gyrus, which was in contrast to the exacerbated microglial response in amyloidogenic models. This microglial degeneration could compromise their normal role of surveying the brain environment and respond to the damage. Here, we have further analyzed the phenotypic profile displayed by the damage-associated microglial cells by immunostaining and qPCR in the hippocampus of postmortem samples of AD patients (Braak V-VI) and control cases (Braak 0-II). Damage-associated microglial cells of Braak V-VI individuals were clustered around amyloid plaques and expressed Iba1, CD68, Trem2, TMEM119 and CD45high. A subset of these cells also expressed ferritin. On the contrary, these microglia down-regulated homeostatic markers, such as Cx3cr1 and P2ry12. The homeostatic and ramified microglial cells of non-demented Braak II cases were characterized by Iba1, CX3CR1, P2ry12, TMEM119 and CD45low expression. The dynamic of the microglial molecular phenotypes associated to AD pathology needs to be considered for better understand the disease complexity and, therefore, guarantee clinical success. Correcting dysregulated brain inflammatory responses might be a promising avenue to prevent/slow cognitive decline.Universidad de Málaga. Campus de excelencia Internacional-Andalucía Tech. Supported by PI18/01557 (AG) and PI18/01556 (JV) grants from ISCiii of Spain co-financed by FEDER funds from European Union
Serotonin transporter in the temporal lobe, hippocampus and amygdala in SUDEP
Several lines of evidence link deficient serotonin function and SUDEP. Chronic treatment with serotonin reuptake inhibitors (SRIs) reduces ictal central apnoea, a risk factor for SUDEP. Reduced medullary serotonergic neurones, modulators of respiration in response to hypercapnia, were reported in a SUDEP post-mortem series. The amygdala and hippocampus have high serotonergic innervation and are functionally implicated in seizure-related respiratory dysregulation. We explored serotonergic networks in mesial temporal lobe structures in a surgical and post-mortem epilepsy series in relation to SUDEP risk. We stratified 75 temporal lobe epilepsy patients with hippocampal sclerosis (TLE/HS) into high (N = 16), medium (N = 11) and low risk (N = 48) groups for SUDEP based on generalised seizure frequency. We also included the amygdala in 35 post-mortem cases, including SUDEP (N = 17), epilepsy controls (N = 10) and non-epilepsy controls (N = 8). The immunohistochemistry labelling index (LI) and axonal length (AL) of serotonin transporter (SERT)-positive axons were quantified in 13 regions of interest with image analysis. SERT LI was highest in amygdala and subiculum regions. In the surgical series, higher SERT LI was observed in high risk than low risk cases in the dentate gyrus, CA1 and subiculum (p < 0.05). In the post-mortem cases higher SERT LI and AL was observed in the basal and accessory basal nuclei of the amygdala and peri-amygdala cortex in SUDEP compared to epilepsy controls (p < 0.05). Patients on SRI showed higher SERT in the dentate gyrus (p < 0.005) and CA4 (p < 0.05) but there was no difference in patients with or without a psychiatric history. Higher SERT in hippocampal subfields in TLE/HS cases with SUDEP risk factors and higher amygdala SERT in post-mortem SUDEP cases than epilepsy controls supports a role for altered serotonergic networks involving limbic regions in SUDEP. This may be of functional relevance through reduced 5-HT availability
Serotonin transporter in the temporal lobe, hippocampus and amygdala in SUDEP
Several lines of evidence link deficient serotonin function and SUDEP. Chronic treatment with serotonin reuptake inhibitors (SRIs) reduces ictal central apnoea, a risk factor for SUDEP. Reduced medullary serotonergic neurones, modulators of respiration in response to hypercapnia, were reported in a SUDEP post-mortem series. The amygdala and hippocampus have high serotonergic innervation and are functionally implicated in seizure-related respiratory dysregulation. We explored serotonergic networks in mesial temporal lobe structures in a surgical and post-mortem epilepsy series in relation to SUDEP risk. We stratified 75 temporal lobe epilepsy patients with hippocampal sclerosis (TLE/HS) into high (16), medium (11) and low risk (48) groups for SUDEP based on generalised seizure frequency. We also included the amygdala in 35 post-mortem cases, including SUDEP (17), epilepsy controls (10) and non-epilepsy controls (8). The immunohistochemistry labelling index (LI) and axonal length (AL) of serotonin transporter (SERT)-positive axons were quantified in 13 regions of interest with image analysis. SERT LI was highest in amygdala and subiculum regions. In the surgical series, higher SERT LI was observed in high risk than low risk cases in the dentate gyrus, CA1 and subiculum (p<0.05). In the post-mortem cases higher SERT LI and AL was observed in the basal and accessory basal nuclei of the amygdala and peri-amygdala cortex in SUDEP compared to epilepsy controls (p<0.05). Patients on SRI showed higher SERT in the dentate gyrus (p<0.005) and CA4 (p<0.05) but there was no difference in patients with or without a psychiatric history. Higher SERT in hippocampal subfields in TLE/HS cases with SUDEP risk factors and higher amygdala SERT in post-mortem SUDEP cases than epilepsy controls supports a role for altered serotonergic networks involving limbic regions in SUDEP. This may be of functional relevance through reduced 5-HT availability
Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age
Retrospective histologic analyses of bone biopsies and of post mortem samples from normal persons of different age groups, and of bone biopsies of age- and sex-matched groups of patients with primary osteoporosis and aplastic anemia show characteristic age dependent as well as pathologic changes including atrophy of osseous trabeculae and of hematopoiesis, and changes in the sinusoidal and arterial capillary compartments. These results indicate the possible role of a microvascular defect in the pathogenesis of osteoporosis and aplastic anemia
- …