42,320 research outputs found

    Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix

    Full text link
    The positive semidefinite rank of a nonnegative (m×n)(m\times n)-matrix~SS is the minimum number~qq such that there exist positive semidefinite (q×q)(q\times q)-matrices A1,…,AmA_1,\dots,A_m, B1,…,BnB_1,\dots,B_n such that S(k,\ell) = \mbox{tr}(A_k^* B_\ell). The most important, lower bound technique for nonnegative rank is solely based on the support of the matrix S, i.e., its zero/non-zero pattern. In this paper, we characterize the power of lower bounds on positive semidefinite rank based on solely on the support.Comment: 9 page

    Semidefinite geometry of the numerical range

    Full text link
    The numerical range of a matrix is studied geometrically via the cone of positive semidefinite matrices (or semidefinite cone for short). In particular it is shown that the feasible set of a two-dimensional linear matrix inequality (LMI), an affine section of the semidefinite cone, is always dual to the numerical range of a matrix, which is therefore an affine projection of the semidefinite cone. Both primal and dual sets can also be viewed as convex hulls of explicit algebraic plane curve components. Several numerical examples illustrate this interplay between algebra, geometry and semidefinite programming duality. Finally, these techniques are used to revisit a theorem in statistics on the independence of quadratic forms in a normally distributed vector

    Semidefinite geometry of the numerical range

    Full text link
    The numerical range of a matrix is studied geometrically via the cone of positive semidefinite matrices (or semidefinite cone for short). In particular it is shown that the feasible set of a two-dimensional linear matrix inequality (LMI), an affine section of the semidefinite cone, is always dual to the numerical range of a matrix, which is therefore an affine projection of the semidefinite cone. Both primal and dual sets can also be viewed as convex hulls of explicit algebraic plane curve components. Several numerical examples illustrate this interplay between algebra, geometry and semidefinite programming duality. Finally, these techniques are used to revisit a theorem in statistics on the independence of quadratic forms in a normally distributed vector

    Regression on fixed-rank positive semidefinite matrices: a Riemannian approach

    Full text link
    The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixed-rank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p≳2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page

    A quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices

    Full text link
    We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices, by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithms development.Comment: 9 pages, 1 figure. Updated version for publicatio

    Exposed faces of semidefinitely representable sets

    Full text link
    A linear matrix inequality (LMI) is a condition stating that a symmetric matrix whose entries are affine linear combinations of variables is positive semidefinite. Motivated by the fact that diagonal LMIs define polyhedra, the solution set of an LMI is called a spectrahedron. Linear images of spectrahedra are called semidefinite representable sets. Part of the interest in spectrahedra and semidefinite representable sets arises from the fact that one can efficiently optimize linear functions on them by semidefinite programming, like one can do on polyhedra by linear programming. It is known that every face of a spectrahedron is exposed. This is also true in the general context of rigidly convex sets. We study the same question for semidefinite representable sets. Lasserre proposed a moment matrix method to construct semidefinite representations for certain sets. Our main result is that this method can only work if all faces of the considered set are exposed. This necessary condition complements sufficient conditions recently proved by Lasserre, Helton and Nie
    • …
    corecore